
Brandon Cook, Brian Friesen, Jack
Deslippe, Kevin Gott, Rahul Gayatri,
Charlene Yang, Muaaz Gul Awan

Preparing Applications for
Perlmutter as an Exascale
Waypoint

Perlmutter Overview

NERSC is the mission High Performance
Computing facility for the DOE SC

- 3 -

7,000 Users
800 Projects
700 Codes
2000 NERSC citations per year

Simulations at scale

Data analysis support for
DOE’s experimental and
observational facilities
Photo Credit: CAMERA

NERSC has a dual mission to advance science
and the state-of-the-art in supercomputing

4

• We	collaborate	with	computer	companies	
years	before	a	system’s	delivery	to	deploy	
advanced	systems	with	new	capabilities	at	
large	scale

• We	provide	a	highly	customized	software	and	
programming	environment	for	science	
applications

• We	are	tightly	coupled	with	the	workflows	of	
DOE’s	experimental	and	observational	facilities		
– ingesting	tens	of	terabytes	of	data	each	day

• Our	staff	provide	advanced	application	and	
system	performance	expertise	to	users

• Winner	of	2011	Nobel	Prize	in	
Physics	for	discovery	of	the	
accelerating	expansion	of	the	
universe.

• Supernova	Cosmology	Project,	
lead	by	Perlmutter,	was	a	
pioneer	in	using	NERSC	
supercomputers	to	combine	
large	scale	simulations	with	
experimental	data	analysis	

• Login	“saul.nersc.gov”

NERSC-9	will	be	named	after	Saul	Perlmutter

5

NERSC Systems Roadmap

NERSC-7: Edison
2.5 PFs
Multi-core CPU
3MW

NERSC-8: Cori
30PFs
Manycore CPU
4MW

2013 2016 2024

NERSC-9: Perlmutter
3-4x Cori
CPU and GPU nodes
>5 MW

2021

NERSC-10
ExaSystem
~20MW

7

LLNL
IBM/NVIDIA

P9/Volta

Perlmutter is a Pre-Exascale System

Crossroads

Frontier

Pre-Exascale Systems Exascale Systems

Argonne
IBM BG/Q

Argonne
Intel/Cray KNL

ORNL
Cray/NVidia K20

LBNL
Cray/Intel Xeon/KNL

LBNL
Cray/NVIDIA/AMD

LANL/SNL
TBD

Argonne
Intel/Cray

ORNL
Cray/AMD

LLNL
Cray/?

LANL/SNL
Cray/Intel Xeon/KNL

2013 2016 2018 2020 2021-2023

Summit
ORNL

IBM/NVIDIA
P9/Volta

LLNL
IBM BG/Q

Sequoia

CORI

A21

Trinity

Theta

Mira

Titan

Sierra

Perlmutter:	A	System	Optimized	for	Science

● GPU-accelerated	and	CPU-only	nodes	
meet	the	needs	of	large	scale	
simulation	and	data	analysis	from	
experimental	facilities

● Cray	“Slingshot”	- High-performance,	
scalable,	low-latency	Ethernet-
compatible	network

● Single-tier	All-Flash	Lustre	based	HPC	
file	system,	6x	Cori’s	bandwidth

● Dedicated	login	and	high	memory	
nodes	to	support	complex	workflows

COE Activities

– Quarterly	hackathons	with	NERSC,	Cray,	
NVIDIA	engineer

– General	programming,	performance	
and	tools	training

– Training	events,	such	as	the	CUDA	
Training	Series.

– Early	access	to	Perlmutter
– Early	access	to	Cori’s	GPU	testbed

Vendor	Resources	Available	to	NESAP	Teams

10

• One	hackathon	per	quarter	from	2019-2021
– 3-4	code	teams	per	hackathon
– Priority	given	to	NESAP	teams

• NERSC,	Cray,	NVIDIA	attendance
• 6-week	‘ramp-up’	period	with	code	team+Cray/NVIDIA	for	~6	

weeks	leading	up	to	hackathon
– Ensures	everyone	is	fully	prepared	to	work	on	hackathon	

day	1
• Tutorials/deep	dives	into	GPU	programming	models,	profiling	

tools,	etc.
• Access	to	Cori	GPU	nodes

NERSC-9	Application	Transition	COE	Hackathons

Data Analytics Stack and IO
Considerations

● Software
○ Optimized analytics libraries, includes Cray Analytics

stack
○ Collaboration with NVIDIA for Python-based data

analytics support
○ Support for containers

● Perlmutter will aid complex end-to-end workflows
● Slurm co-scheduling of multiple resources and real-

time/deadline scheduling
● Workflow nodes: container-based services

○ Connections to scalable, user workflow pool
(via Spin) with network/scheduler access

● High-availability workflow architecture and system
resiliency for real-time use-cases

Analytics	and	Workflow	Integration

13

All-flash	file	system

4.0 TB/s to Lustre

Logins, DTNs, Workflows

All-Flash Lustre Storage

CPU + GPU Nodes

Community FS
> 100 PB, > 100 GB/s

Terabits/sec to
ESnet, ALS, ...

• Fast across	many	dimensions
– >	4	TB/s	sustained	bandwidth
– >	7,000,000	IOPS
– >	3,200,000	file	creates/sec

• Usable for	NERSC	users
– >	30	PB	usable	capacity
– Familiar	Lustre	interfaces
– New	data	movement	capabilities

• Optimized for	data	workloads
– NEW	small-file	I/O	improvements
– NEW	features	for	high	IOPS,	non-

sequential	I/O

● Usual best practices apply for best performance
○ Use Lustre file striping
○ Avoid opening many files at once
○ Avoid using small files and small reads/writes

● ...but Perlmutter will be more forgiving
○ Forget to stripe? Lustre Progressive File Layouts will do it

for you automatically
○ Have many files? Lustre Distributed Namespace adds more

metadata processing muscle
○ Must do small I/O? Lustre Data-on-MDT stores smaller files

on IOPS-optimized storage

Maximizing	I/O	Performance

Data	Movement

● Project file system replaced
with Community file system

● NERSC-Cray collaboration
will simplify data motion
between Perlmutter &
Community FS

● Feedback on how your
workflow moves data between
tiers will help define this data
movement API

cscratch
(30 PB)

project
(12 PB)

archive
(150 PB)

Burst Buffer
(1.8 PB) Perlmutter

(30 PB)

Community
(>100 PB)

archive
(>>150 PB)

Cori Perlmutter

Programming &
Performance Portability

Exposing Parallelism

CPU (KNL)
● 68 cores
● 4 threads each
● 512-bit vectors
● pipelined

instructions
● double precision

○ ~2000 way
parallelism (68*4*8)

GPU (V100)
● 80 SM
● 64 warps per SM
● 32 threads per

warp
● double precision

○ ~150,000+ way
parallelism
(80*64*32)

Data Locality

GPU Bus has low bandwidth compared to HBM.

Need to carefully manage data locality to avoid moving
data back and forth often.

UVM can “potentially” help, but still need to think!

Performance Portability Strategy
Threads and Vectors (SMT, SIMT, SIMD).

1. SIMT ≅ SMT : What you tend to get when taking a GPU code and attempting a first pass
portable version. This leaves SIMD on the GPU un-expressed. Leads to concept of
coalescing.

1. SIMT ≅ SIMD : What you tend to get by default with OpenMP (!$OMP SIMD). Limits what
you can vectorize on GPU to code with which the CPU can vectorize.

1. Use nested parallelism to map GPU SMs/Warps to CPU Cores/Threads and threads within
Warps to Vector lanes. Still lose flexibility on the GPU.

Abstractions and parallelism

Abstract operations for variable-width vectors

Example: Gromacs “cluster” pair-list adapts to
128, 256, 512-bit simd and 32 way SIMT by
resizing the cluster.

Porting to new arch = implement abstract
interface with intrinsics

*Effectiveness of this strategy depends on
number of performance critical kernels

Roofline on NVIDIA GPUs

We have proposed a methodology
to construct a hierarchical Roofline
● that incorporates the full

memory hierarchy
○ L1, L2, HBM, System

Memory (NVLink/PCIe)
● and instruction types, data

types…
○ FMA/no-FMA/IntOps/…
○ FP64, FP32, FP16, …
○ CUDA core/Tensor core

Roofline on NVIDIA GPUs

Analyze performance and track optimization on both traditional HPC
and Machine Learning applications. Left: Sigma-GPP from BerkeleyGW.
Right: 2D convolution kernel from ResNet50 using TensorFlow.

Performance Portability Options

● Abstractions
○ identify and use appropriate abstractions to flexibly

expose the parallelism in a problem
○ account for potential switch in algorithm

● Use a library when possible
● Programming model support

○ C++ templates with CUDA/ CPU intrinsics, Kokkos,
Raja, OpenMP, OpenACC, CUDA Fortran, and more

Engaging	around	Performance	Portability

NERSC	is	working	with	PGI	to	
enable	OpenMP	GPU	
acceleration	with	PGI	compilers
● Ensures	continuity	of	

OpenMP	added	to	NERSC	
apps	for	N8

● Co-design	with	PGI	to	
prioritize	OpenMP	
features	for	GPU

● Use	lessons	learned	to	
influence	future	versions	
of	OpenMP

● Monitoring	SOLLVE	efforts

NERSC	collaboarting	with	OLCF	and	ALCF	on	
development	of	performanceportability.org

● Are you part of an
ECP ST project?
Interested in
contributing a
NERSC hosted
training?

● kokkos, flang,
SLATE, CI/Gitlab,
spack

OpenMP for GPUs

● OpenMP 5.0 improvements for accelerators
○ Unified memory support
○ Implicit declare target

● NERSC is collaborating with NVIDIA and OpenMP
committee to enable OpenMP GPU acceleration in
PGI compilers
○ Co-design with application requirements

● Tell us your experience!
○ Techniques that work? Failures?

Application readiness

NERSC’s	Challenge

How to enable NERSC’s diverse community of 7,000
users, 750 projects, and 700 codes to run on advanced
architectures like Perlmutter and beyond?

Application	Readiness	Strategy	for	Perlmutter

28

GPU	Readiness	Among	NERSC	Codes	(Aug’17	- Jul’18)

29

GPU Status & Description Fraction

Enabled:
Most features are ported
and performant

32%

Kernels:
Ports of some kernels have
been documented.

10%

Proxy:
Kernels in related codes
have been ported

19%

Unlikely:
A GPU port would require
major effort.

14%

Unknown:
GPU readiness cannot be
assessed at this time.

25%

Breakdown of Hours at NERSC

A	number	of	applications	in	NERSC	
workload	are	GPU	enabled	already.	

We	will	leverage	existing	GPU	codes	
from	CAAR	+	Community

How	to	transition	a	workload	with	700	Apps?	NESAP
• ~25	Projects	selected	from	competitive	application	

process	with	reviews
• ~15	postdoctoral	fellows
• Deep	partnerships	with	every	SC	Office	area
• Leverage	vendor	expertise	and	hack-a-thons
• Knowledge	transfer	through	documentation	and	

training	for	all	users
• Optimize	codes	with	improvements	relevant	to	

multiple	architectures

Application	Readiness	Strategy	for	Perlmutter

30

NERSC Exascale Science Application Program (NESAP)

Simulation
~12 Apps

Data Analysis
~8 Apps

Learning
~5 Apps

● Based on successful NESAP for Cori program, similar to CAAR and ESP
● Details: https://www.nersc.gov/users/application-performance/nesap/

Selected ECP NESAP engagements

WDMAPP Subsurface EXAALT

NWChemEx ExaBiome ExaFEL

WarpX (AMReX) ExaLearn

NESAP	2	Timeline

32

NESAP 2 NESAP For Data
(6 Existing Apps)

2018 2019 2020 2021

NESAP 1

Early Access

COE hack-a-thon’s
Begin

Code Team Selection (Dec. 2018)

Finalize Edison Reference Numbers

Application readiness:
case studies

ExaBiome

Microbiomes

● Microbes:	these	are	single	cell	organism,	e.g.	viruses,	bacteria
● Microbiomes:	communities	of	microbial	species	living	in	our	environment.
● Metagenomics:	genome	sequencing	of	these	communities	(growing	

exponentially)

ExaBiome software stack

● MetaHipMer:	optimized	for	assembling	metagenomes.											
● diBELLA:	Long	read	aligner.
● PISA:	protein	clustering

Smith-Waterman, the core of all the assembly

This alignment information is used to stitch together
different overlapping parts of the genome or determine
similarity among proteins.

Dynamic Programing
MatrixMajority of the ExaBiome tools make use of

Smith-Waterman algorithm at their core.

0 0 0 0 0 0

0 5 10 7 4 1

0 2 7 15 12 9

0 0 4 20 17 14

0 0 1 17 25 22

0 0 0 14 22 30

A A C T G

Smith-Waterman Algorithm

Query

R
ef

er
en

ce

A C
 C

 T G

S = Max (Hi-1,j-1 + M,
Hi-1,j+ M,
Hi,j-1+ M,
0)

M = 5, -3

G T - C A A
G T C C - A

• Because of convoluted dependencies,
parallelism exists only along the
minor-diagonal.

• Amount of parallelism varies as the
algorithm progresses.

• Cell dependencies make the memory
accesses a challenge on GPU.

Smith Waterman: Challenges

0 0 0 0 0 0

0

0

0

0

0

R
ef

er
en

ce

Query

How to handle dependencies?

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0

0 5 10 7 4 1

0 2 7 15 12 9

0 0 4 20 17 14

0 0 1 17 25 22

0 0 0 14 22 30

A C
 C

 T G

A A C T G

The problem of non-coalesced memory accesses

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4

1 2 3

1 2

1

Thread-1
200 bytes

Row Major Indexing

• Threads access locations length(query)*2 bytes apart
while cache line is 128 bytes long.

• This leads to non-coalesced memory accesses.

Thread-2

When only a portion of matrix is required

sh_new

sh_prev

sh_prev_prev
_prev_prev

_prev

_new

• Using the valid array to identify the active threads, helps correctly identifying the
dependencies and enables using shuffle synch in scoring phase.

• Effectively storing the DP table-arrays in registers instead of shared memory
Inter-warp values are
shared using shared memory

Phasing-out threads need to spill their registers.

When complete matrix needs to be stored

Lookup
Table

i+j = diagonal ID

Diagonal
offset

Compute
offset

Element
offset +

Diagonal Major Indexing

Comparison with Shared Memory Approach

Total Alignments: 1 million Contig Size: 1024 Query Size: 128

Scaling across multiple GPUs

Total Alignments: 10 million Contig Size: 1024 Query Size: 128

GPU-Klign Workflow

Reads Index Alignments

Reads Index Alignments

Reads Index Alignments

n
ra

nk
s

contigs

contigs

contigs

When batch size is large enough,
GPU-Kernel is launched.

GPU Global memory is equally
partitioned among sharing ranks

n/G ranks share a
GPU. Where G is
the number of GPUs
available.

Klign vs GPU-Klign

Smith-Waterman takes
up about 41% of total time.

Smith-Waterman takes
up about 5% of total time.

EXAALT

EXAALT ECP APP
● ECP EXAALT project seeks to extend the accuracy, length and time

scales of material science simulations for fission/fusion reactors using

LAMMPS MD

● Primary KPP target is MD of nuclear fusion material that uses the

SNAP interatomic potential in LAMMPS

○ Performance directly depends on a single node performance of

SNAP

TestSNAP

• TestSNAP	- an	independent	

standalone	app	for	SNAP	module	in	

LAMMPS

• Testbed	for	various	parallelization	

and	optimization	strategies

• Successful	optimizations	are	merged	

into	LAMMPS

for(num_atoms) // loop over atoms
{

build_neighborlist(); //build neighborlist for each atom
compute_ui();
compute_yi();
for(num_nbors) //loop over neighbors
{

compute_duidrj();
compute_dbidrj();
update_force(); //update force for (atom,nbor) pair

}
}

TestSNAP	refactored
for(num_atoms)
{

build_neighborlist();
compute_ui();
compute_yi();
for(num_nbors)
{

compute_duidrj();
compute_dbidrj();
update_force();

}
}

Distribute	work	across	atom	dimension

• Break up the compute kernels

• Store atom specific information

across kernels

• Increases memory footprint

• Distribute the atom specific work in

each kernel over the threadblocks

and threads of a threadblock

Collapse	atom	and	neighbor	loops

Distribute the works across atom and

neighbor loops

Column	major	data	access	
Accessing the data in a column major

fashion gave us a ~2X performance

boost

Reverse	loop	order

● Reverse the loops to make atom

index as the fastest moving index

○ Gave a 2x performance

boost

TestSNAP updates in LAMMPS/SNAP

● All the updates from

TestSNAP have been

successfully

included in

LAMMPS/SNAP.
Baseline

AMReX

AMReX: Block-Structured
AMR Co-Design Center

● Mesh, Particle, AMR, Linear Solvers, Cut-
Cell Embedded Boundary

● Written in C++ (also an option for using
Fortran interfaces)

● MPI + X
○ OpenMP on CPU
○ CUDA, HIP, DPC++ internally on GPU
○ Support for OpenACC, OpenMP on GPU

● Solution of parabolic and elliptic systems
using geometric multigrid solvers

● Support for multiple load balancing
strategies

● Native I/O format – supported by Visit,
Paraview, yt

AMReX: Implementing on GPUs
Overall Strategy: Put floating point data (mesh values, particle data) on the
accelerator and leave it there. Move as little as possible throughout.

CPU: Few slower,
generalized threads.

GPU: Many faster,
specialized threads.

• Solution Control
• Communication

And other serial or metadata calculations.

• Load Balancing
• I/O

• Particle Calculations
• Stencil Operations

And other highly parallelizable algorithms.

• Linear Solvers

• Eliminate dependencies (e.g. Thrust,
compiler without any Fortran compiler).

• User-proof API. (Can’t do it wrong).

• Optimizing communication (currently
the biggest single bottleneck).

• Simultaneous CPU & GPU work w/
C++ threads (e.g. I/O).

A Porting Example: Before and After

CPU version
Elixir	for	
temporary	
arrays

Call functions
on each grid.

Tile	only
if	on	the	CPU

Loop	
over	
grids

OpenMP	
across	tiles

AMReX	in	2018,	early	2019: AMReX	in	2020:

Array4s	for	
indexing.

for (MFIter fai(*this); fai.isValid(); ++fai)
{

const Box& gbx = fai.fabbox();
const Box& vbx = fai.validbox();
BoxList blst = amrex::boxDiff(gbx,vbx);
const int nboxes = blst.size();
if (nboxes > 0)
{

AsyncArray<Box> async_boxes(blst.data().data(), nboxes);
Box const* pboxes = async_boxes.data();

long ncells = 0;
for (const auto& b : blst) {

ncells += b.numPts();
}

auto fab = this->array(fai);
AMREX_FOR_1D (ncells, icell,
{

const Dim3 cell = amrex::getCell(pboxes, nboxes, icell).dim3();
for (int n = strt_comp; n < strt_comp+ncomp; ++n) {

fab(cell.x,cell.y,cell.z,n) = val;
}

});
}

}

Old	GPU	Version:	
1) CPU:	calculate	a	list	of	boundary	boxes,
2) GPU:	launch	and	set	the	value	on	only	those	

boxes.	

New	GPU	Version:
1) Immediately	launch	over	entire	FAB’s	

box.	
2) If	thread’s	cell	is	outside	the	valid	box	

(so,	it’s	a	ghost	cell)	set	the	value.

Performance Example: setBndry

for (MFIter fai(*this); fai.isValid(); ++fai)
{

const Box& gbx = fai.fabbox();
const Box& vbx = fai.validbox();
auto fab = this->array(fai);

AMREX_PARALLEL_FOR_4D(gbx, ncomp, i, j, k, n,
{

if (!(vbx.contains({i, j, k})))
{

fab(i,j,k,n) = val;
}

});
}

- 50% - 150% faster
on the GPU.

- Considerably
slower on the CPU.

- Merging kernel
does NOT improve
performance of
either.

AMReX is a platform for testing advanced
features on production-scale simulations.

● Comparison of CUDA graph build
methods vs. using a fused kernel
launch methodology.

● Recording with dependencies and well
defined simultaneous work gives
better performance in all aspects.

● AMReX fused kernels are currently
better, but only barely. Keeping an eye
on further developments to ensure
optimal communication performance.

❖ AMReX is also a platform to test (CUDA vs. HIP vs. DPC++) & C++ portability.
❖ Additional advanced NVIDIA libraries we want to test: NVSHMEM, Optix.

Testing CUDA Graphs for Halo Distribution algorithm:

AMReX used by six ECP applications

Combustion	(Pele)
Astrophysics	(Castro) Cosmology	(Nyx)

Accelerators	(WarpX)

Multiphase	flow	(MFIX-Exa)

Non-ECP	applications
● Phase	field	models
● Microfluids
● Ionic	liquids
● Non-Newtonian	flow
● Fluid-structure	

interaction Exawind

● Shock	physics
● Cellular	automata
● Low	Mach	number	

astrophysics
● Defense	science

WarpX
● Original GPU strategy was using

OpenACC in Fortran functions.
● Converted to AMReX's C++ lambda

based approach.
○ Thrust vectors as particle containers

used too much memory
○ AMReX's PODVector class mitigates

memory usage issue allowing for runs
with more particles. The latest

● AMReX has added more features for
random numbers and bin data structure
to support binary collision of particles.

● KPP measurement on 2048 Summit
nodes was over 47x compared to
baseline.

● Castro functionality on GPUs:
○ Hydrodynamics (2nd order unsplit CTU)
○ Strang-split or Simple SDC reactions (VODE)
○ Explicit thermal diffusion
○ Poisson self-gravity with geometric multigrid
○ Stellar equations of state

● Ongoing/Future GPU ports:
■ Flux-limited diffusion radiation
■ 4th-order SDC for hydro + reactions

● Castro GPU strategy:
○ CUDA Fortran kernels loop through cells in boxes
○ Python preprocessor script inserts GPU kernels
○ Future migration to AMReX C++ lambda launches

● ECP-funded developments: (Exastar Collaboration)
○ Coupled to Thornado (ORNL) for two-moment neutrino

radiation transport for core-collapse supernovae
○ Thornado accelerated with OpenACC & OpenMP

Castro: Open-Source Astrophysical Radiation
Hydrodynamics

Nyx
● GPU capabilities

○ Dark matter particles (AMReX NeighborParticleContainer)
○ Hydrodynamics (AMReX GPU memory management

(prefetching/organizing) and kernel launch)
○ Heating-cooling reactions (AMReX Arena alloc and free,

linking against Sundials for time integration)
● GPU challenges

○ Optimizing memory access/use when overflowing high-
bandwidth GPU memory

○ Investigating appropriate cost functions for load-balancing
simulations where particles cluster (single grid vs dual-grid)

○ Extending different coupling strategies between advective
and reactive terms to the GPU

● Physics modules in active development
○ AGN feedback
○ Accounting for halos effect on

reionization on-the-fly
○ Non-relativistic neutrinos

MFIX-Exa
● GPU computation for both the fluid and solid (particles)

phases
○ Solvers for the fluid-phase update scheme are AMReX

solvers
○ Tests with 6 MPI tasks and 6 GPUs (1 GPU per MPI

task) on a single Summit node
○ Maximum speedup of about 53.9x for a prototypical

CLR with respect to a simulation with 36 MPI tasks.
● Current focus

○ Embedded boundary treatment of particles
○ Multiscale models for improved efficiency in dense

particle regions
○ New projection based algorithm

BerkeleyGW

BerkeleyGW

Many-body effects in Excited-State
properties of complex materials
● Photovoltaics
● LEDs
● Quantum Computers
● Junctions / Interfaces
● Defect Energy Levels

BerkeleyGW

● Material Science: http://www.berkeleygw.org
● ~100,000 lines of code, mainly Fortran 90
● MPI, OpenMP(on CPU), CUDA/OpenACC(on GPU)
● Computational motifs:

○ Large distributed matrix multiplication (tall and skinny matrices)
○ Large distributed eigenvalue problems
○ Fast Fourier Transformations (FFT)
○ Dimensionality reduction and low-rank approximations

● Libraries required:
○ BLAS, LAPACK, ScaLAPACK, FFTW, ELPA, PRIMME, HDF5
○ cuBLAS, cuFFT

BerkeleyGW Workflow

✓

✓

Porting and Optimization Strategies

Implementations
● CUDA (cuBLAS, cuFFT, self-written kernels), Fortran interface
● OpenACC directives, cuBLAS and cuFFT Fortran interface from PGI
● Better control of kernel execution with CUDA

v.s. Easier to program/portability with OpenACC
Strategies/Techniques
● Use streams for asynchronous data transfers and to increase

concurrency
● Use a hybrid scheme for large reductions (100s-1000s of billions)

○ shared memory on GPU and OpenMP on CPU
● Overlap MPI communication with GPU computation
● Use batched operation for more flexible parallelism and to save memory

Benchmark Systems

Three benchmarks:
● Si214, Si510, Si998
● To study a divacancy defect in Silicon, a prototype of a solid state qbit

Si214 Si510 Si998 Computational Cost

Epsilon Module (MTXEL Kernel)

● cuFFT, pinned memory, CUDA streams
● Asynchronous memory transfers, high concurrency
● Batched to avoid OOM
● CUDA kernels for element-multiply and box-vector conversion

1 2 3 4 50

Non-Blocking Cyclic Communication
(Example Task#2, second cycle)

ipe_sendipe_rec

ipe_rec_act ipe_send_act

Epsilon Module (CHI-0 Kernel)

● cuBLAS, pinned memory, CUDA streams, async copy
● Non-Blocking cyclic communication, overlap MPI comm. with GPU compute
● Batched to avoid OOM

Epsilon Module

CPU+GPU vs CPU-only

● MTXEL: 12x speed-up
● CHI-0: 16x speed-up

Overall 14x!

Epsilon Module

Strong scaling and weak scaling on Summit@OLCF
Left: Good parallel efficiency; still some parallel I/O issue for large scale calculations. Right: Good

weak scaling; as problem size increases, memory grows to O(N^3) and FLOPs to O(N^4).

Epsilon Module

● Comparison of power
efficiency between
Summit (V100 GPUs) and
Edison (Xeon CPUs)

● GPUs are 16x more power
efficient than CPUs
consistently through
three benchmarks!

Sigma Module (GPP Kernel)

Implementations
● CUDA, more complete than the OpenACC version as of Sept 2019

Strategies/Techniques
● Use streams for asynchronous data transfers and to increase

concurrency
● Use a hybrid scheme for large reductions (100s-1000s of billions)

○ shared memory on GPU and OpenMP on CPU
● Overlap MPI communication with GPU computation
● Use batched operation for more flexible parallelism and to save memory

Sigma Module (GPP Kernel)

A 1:1 node comparison give a 33x
speed-up of a Cori-GPU node vs a

Stampede2-KNL node.
(Timings are for a single k-point).

CUDA and OpenACC competing for
best performance.

Summary

NERSC-9: A System Optimized for Science

● Cray	Shasta	System	providing	3-4x	capability	of	Cori	system
● First	NERSC	system	designed	to	meet	needs	of	both	large	scale	simulation	

and	data	analysis	from	experimental	facilities
○ Includes	both	NVIDIA	GPU-accelerated	and	AMD	CPU-only	nodes	
○ Cray	Slingshot	high-performance	network	will	support	Terabit	rate	connections	to	system
○ Optimized	data	software	stack	enabling	analytics	and	ML	at	scale
○ All-Flash	filesystem	for	I/O	acceleration

● Robust	readiness	program	for	simulation,	data	and	learning	applications	
and	complex	workflows

• Postdoctoral	fellows
– including	Grace	Hopper	fellowship

• Application	performance	specialists

NERSC	is	hiring!

Thank
You !

The end

Perlmutter was announced 30 Oct 2018
“Continued leadership in high performance computing is vital to
America’s competitiveness, prosperity, and national security,”
said U.S. Secretary of Energy Rick Perry. “This advanced new
system, created in close partnership with U.S. industry, will give
American scientists a powerful new tool of discovery and
innovation and will be an important milestone on the road to
the coming era of exascale computing.”

"We are very excited about the Perlmutter system," said NERSC Director
Sudip Dosanjh. “It will provide a significant increase in capability for our
users and a platform to continue transitioning our very broad
workload to energy efficient architectures. The system is optimized for
science, and we will collaborate with Cray, NVIDIA and AMD to ensure that
Perlmutter meets the computational and data needs of our users. We
are also launching a major power and cooling upgrade in Berkeley Lab’s
Shyh Wang Hall, home to NERSC, to prepare the facility for Perlmutter.”

