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Material Science/Chemistry at Exascale

Mat. Sci & Chem apps like VASP, Quantum ESPRESSO, NWChem, GAMESS, QMCPACK, 
BerkeleyGW, and CP2K are some of the most heavily used apps at DOE facilities. 

They are being used to design and understand the fundamental components of Quantum 
Computers, Solar Cells, OLEDs, Batteries, Catalysts, Bio-Energy, Semiconductors, 
Sensors, Hydrogen Storage, Carbon Sequestration



Computational Material Science
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DFT “Kohn-Sham” 
Equations for E(k)

In crystalline materials, 
electrons are allowed to 
occupy only specific 
energy states or “bands” 
E(k). 

These bands (and gaps) 
determine material 
properties. 



Equation of Motion for an Electron
DFT is deficient in computing E(k) for many systems, where 
excitations take the form of an independent particle with effective 
complex energies - E(k)

The Dyson equation:

e-



What is GW

The “GW” method is an accurate
approach for simulating the “excited 
state” properties of materials. 

• What happens when you add or 
remove an electron from a system?

• How do electrons behave when 
you apply a voltage?

• How does the system respond to 
light or X-rays?

DFT

GW



What is GW

Many-body effects extremely important in 
Excited-State properties of Complex 
Materials for Devices:

• Photovoltaics
• LEDs
• Quantum Computers
• Junctions / Interfaces
• Defect Energy Levels
• ….



BerkeleyGW

• A massively parallel package 
for GW calculations

• Sits on top of DFT codes

• Computational motifs
– FFTs
– Dense linear algebra
– Large reductions



BerkeleyGW

• Large reductions in Sigma-GPP module
• Study of the divacancy effect in Silicon (prototype for qubits)  

• Si510 system
• >75% after optimization!



Sigma-GPP

• Calculate interacting electron energy 

• ῶ and Ω are complex double precision arrays over G,G’ derived from the polarizability
• M are complex double-precision arrays representing transition probabilities
• En are DFT orbital energies
• E is an array of “response” energies.
• v is the coulomb interaction in plane-wave basis G



Sigma-GPP

do n1 = 1, nbands n’ e.g. 2763 
do igp = 1, ngpown G’ e.g. 6633

do ig = 1, ncouls G e.g. 26529 
do iw = 1, nw E e.g. 3

compute: 1. mixed data types
e.g. complex double, double, integer

2. various memory access patterns
e.g. (ig,igp)(ig,n1)(igp,n1)(iw,n1)(n1) 

3. complex number divisions 
4. nw is very small, will be unrolled

reduction: 1. complex numbers
2. all top 3 loops, billions of iterations

Pseudo Code



V1. Naïve Implementation 

• Collapse the first 3 loops to gain parallelism

TFLOPs Time (sec) TFLOP/s
v1.collapse3 3.71 1.63 2.27

!$ACC PARALLEL LOOP COLLAPSE(3) REDUCTION(+: )
do n1 = 1, nbands

do igp = 1, ngpown
do ig = 1, ncouls

do iw = 1, nw #unrolled
compute and reduction



V2. More Compute Per Thread

TFLOPs Time TFLOP/s
v1.collapse3 3.71 1.63 2.27
v2.collapse2 3.71 1.73 2.15

!$ACC PARALLEL LOOP COLLAPSE(2) REDUCTION(+: )
do igp = 1, ngpown

do ig = 1, ncouls
do n1 = 1, nbands #unrolled too!

do iw = 1, nw #unrolled
compute and reduction

• Move n’ loop in, and collapse the first 2 loops



• L2/HBM AI increases!

• Register count at 186
– Very low occupancy
– 8 warps per SM

• Need more warps to hide latency!

V2. More Compute Per Thread



V3. Increase Threadblock Size

• Force threadblock size to be 512, instead of the default 128

• Register spills but performance may not be bad!

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 186 registers, 624 bytes cmem[0], 32 bytes cmem[2]

104 bytes stack frame, 188 bytes spill stores, 168 bytes spill loads

ptxas info : Used 128 registers, 624 bytes cmem[0], 32 bytes cmem[2]

!$ACC PARALLEL LOOP COLLAPSE(2) VECTOR_LENGTH(512) REDUCTION(+: )



V3. Increase Threadblock Size

• More bandwidth bound now but 
latency hiding is successful!

TFLOPs Time TFLOP/s

v2.collapse2 3.71 1.73 2.15

v3.vector512 3.71 1.40 2.65



V4. Reduce Branching 

• Bring iw loop outside of the kernel

• Fewer variables to be reduced -> lower register pressure
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads

ptxas info : Used 122 registers, 600 bytes cmem[0], 32 bytes cmem[2]

do iw = 1, nw #reduce branching
!$ACC PARALLEL LOOP COLLAPSE(2) VECTOR_LENGTH(512) REDUCTION(+: )
do igp = 1, ngpown

do ig = 1, ncouls
do n1 = 1, nbands #unrolled  

compute and reduction



V4. Reduce Branching 

• Aggregated data for all kernels 

• BRA instruction count
14,278,897,053
5,975,051,812   x  2

TFLOPs Time TFLOP/s

v3.vector512 3.71 1.40 2.65

v4.iwoutside 3.52 1.17 3.00

16%



V5. Swap Indices

TFLOPs Time TFLOP/s

v4.iwoutside 3.52 1.17 3.00

v5.swapindices 3.52 1.16 3.03

do iw = 1, nw
!$ACC PARALLEL LOOP 
do igp = 1, ngpown

do ig = 1, ncouls
do n1 = 1, nbands
wx_array(iw,n1) to (n1,iw)



V6. Simplify Code

• Fewer instructions  -> less work
– Pull repeated instructions outside the loop
– Use temporary variables to hold intermediate values for reuse

• Less branches -> better programming
– 3 branches is more than 1 branch 

worse than 2 branches!

TFLOPs Time TFLOP/s

v5.swapindices 3.52 1.16 3.03

v6.simplify 3.30 1.10 3.00



V7. Replace Divides

• Replace (complex) div. with (double) rcp. and (complex) mul.
• Lower instruction count:  40%

• More bandwidth bound now!

TFLOPs Time TFLOP/s

v6.simplify 3.30 1.10 3.00

v7.divs 2.09 0.66 3.18



• Can be confirmed by Nsight Compute profiles

V7. Replace Divides



V8. Replace abs(x) with x**2

• sqrt(complex)   vs   power of 2
• Causing pipeline to wait

TFLOPs Time TFLOP/s

v7.divs 2.09 0.66 3.18

v8.abs 1.99 0.62 3.23

complex(DP) ssx
if (abs(ssx) .le. ssxcutoff) then  

real(DP) ssxpower
if (ssxpower .le. ssxcutoff **2) then



V8. Replace abs(x) with x**2

Before: 
– Wait: warp was stalled waiting on a fixed latency execution dependency 



V8. Replace abs(x) with x**2

After:
– Wait: 46.6% -> 23.7% 



V9. Cache Blocking 
• Non-coalesced memory access for aqsntemp
• Causing Long Scoreboard Warp State

– Warp stalled waiting for L1TEX (local, global, surface, tex) memory operation



V9. Cache Blocking 

• Break loops into chunks and reuse data across threadblocks
• Increase L2 hit rate

TFLOPs Time TFLOP/s

v8.abs 1.99 0.62 3.23

v9.block 2.00 0.57 3.50

!$ACC LOOP GANG VECTOR
do ig_blk = 1, ig_blksize
!$ACC LOOP SEQ
do ig = ig_blk, ncouls, ig_blksize



V9. Cache Blocking 
• Less coalescence and higher L2/L1 hit rate
• Not much more could be done; arrays of various dimensions



Summary
8 Steps to Optimize Sigma-GPP

1. Collapse n’, G’, and G loops
2. Bring n’ loop in; collapse only G’ and G
3. Adjust threadblock size 
4. Reduce branching; pull iw loop outside
5. Swap indices to suite parallelisation
6. Simplify code
7. Replace div. with rcp. and mul.
8. Replace abs with power of 2
9. Cache blocking

!$ACC PARALLEL LOOP REDUCTION(+: )
do n1 = 1, nbands

do igp = 1, ngpown
do ig = 1, ncouls

do iw = 1, nw
compute and reduction

TFLOPs Time TFLOP/s
v1.collapse3 3.71 1.63 2.27

v9.block 2.00 0.57 3.50

3x !!



Summary

• Code is still bandwidth and latency bound
– shared memory
– lower register count
– improve FMA ratio

• Together with profilers, 
Roofline provides the 
complete solution for your 
performance analysis and 
optimization needs!



Acknowledgement

• This material is based upon work supported by the Advanced Scientific 
Computing Research Program in the U.S. Department of Energy, Office 
of Science, under Award Number DE-AC02-05CH11231. 

• This material is based upon work supported by the DOE RAPIDS SciDAC
Institute. 

• This research used resources of the National Energy Research Scientific 
Computing Center (NERSC), which is supported by the Office of Science 
of the U.S. Department of Energy under contract DE-AC02- 05CH11231. 


