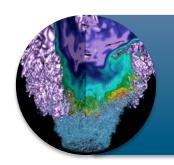
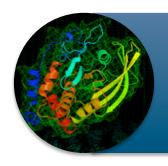

NERSC and HTC


Shane Canon, David Skinner and Jay Srinivasan NUG2013


Science Strategies @ NERSC

Science at Scale

Petascale to Exascale

Science through Volume

Thousands to Millions of Simulations

Science in Data

Petabytes to Exabytes

Home

References

A Materials Genome Approach

Accelerating materials discovery through advanced scientific computing and innovative design tools.

Enter formulas

e.g., Fe2O3 Fe3O4

Search

Database Statistics

19120 materials

3050 bandstructures

214 intercalation batteries

4158 conversion

Materials Explorer

Search for materials information by chemistry, composition, or property.

Computational phase diagrams for closed and open systems. Find stable phases and study reaction pathways.

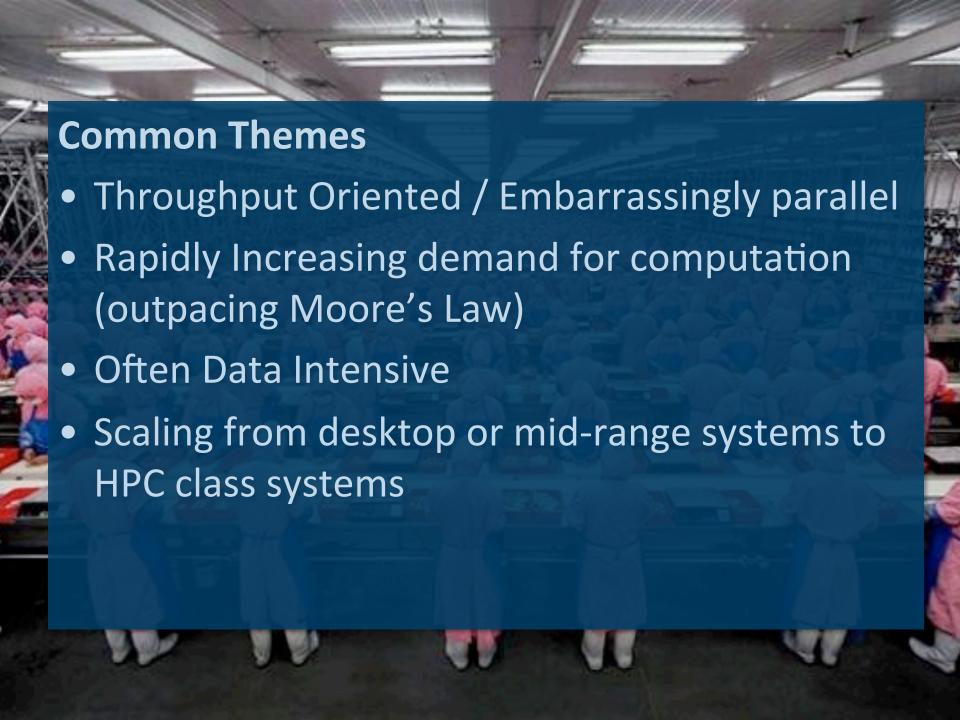
Lithium Battery **Explorer**

Find candidate materials for lithium batteries. Get voltage profiles and oxygen evolution data.

Calculate the enthalpy of tens of thousands of reactions and compare with experimental values.

Crystal Toolkit

Convert between CIF and VASP input files. Generate new crystals by substituting or removing species.



Predict new compounds using data-mined substitution algorithms.

Press Highlights

The New Hork Times

Latest News

Approaches

- Throughput Queues
- Private/User Allocation
 - Task Farmer (NERSC Developed or Cray Provided)
 - MyHadoop
 - MySGE
- Shared
 - CCM/Torque
- Hybrid?
 - High-Throughput Queue Systems

Throughput Queues

Serial Queue on Carver

- 150 running
- 20 eligible
- Best for serial jobs needing full Linux stack

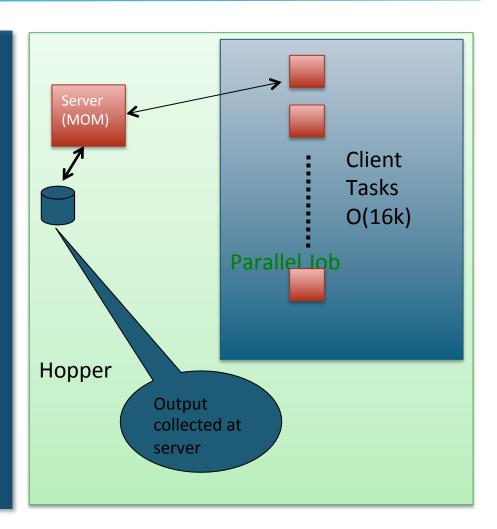
Throughput Queue on Hopper

- 250 running
- 500 eligible
- Best for high-throughput, small concurrency jobs

Private Allocation

Compute Nodes

TaskFarmer



Server

- Portable
- Reads in query genes
- Tracks progress and re-runs failed tasks
- Maintains checkpoint
- Collects output from clients

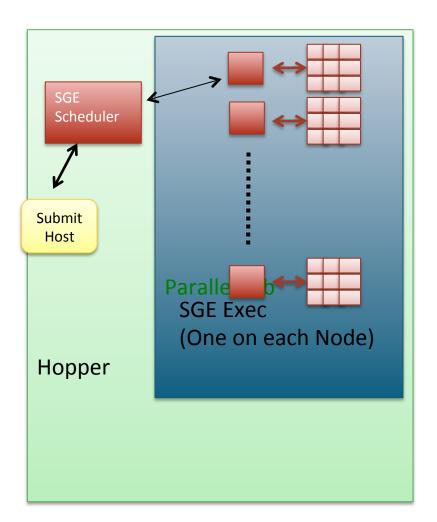
Client

- Can run any executable or script
- Gathers command line arguments from server
- Fetches input from server and pushes back results

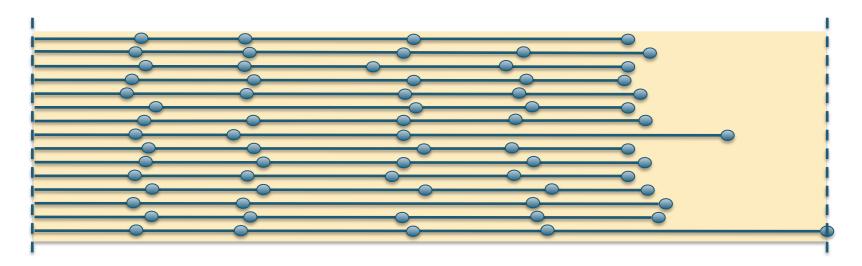
Hadoop/MapReduce

Strengths of MapReduce and Hadoop

- Fault Tolerance Model
- Data Locality
- Simple Programming Model
- Hides Complexity
- Domain Specific Extensions
- Strong Community



MySGE


- User submits a single parallel job
- Personnel SGE scheduler is started
- User can submit jobs to SGE without modifications
- User still needs to think about scaling issues

Downside to Private Approach

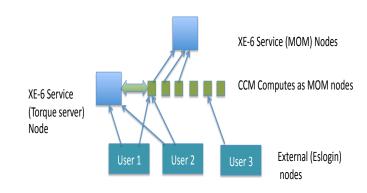
- Load imbalance can lead to wasted resources and additional charging
- Other users can't take advantage of idle cores

Running a shared-node Serial workload on the XE-6 using CCM

Using CCM to run a shared-node serial workload

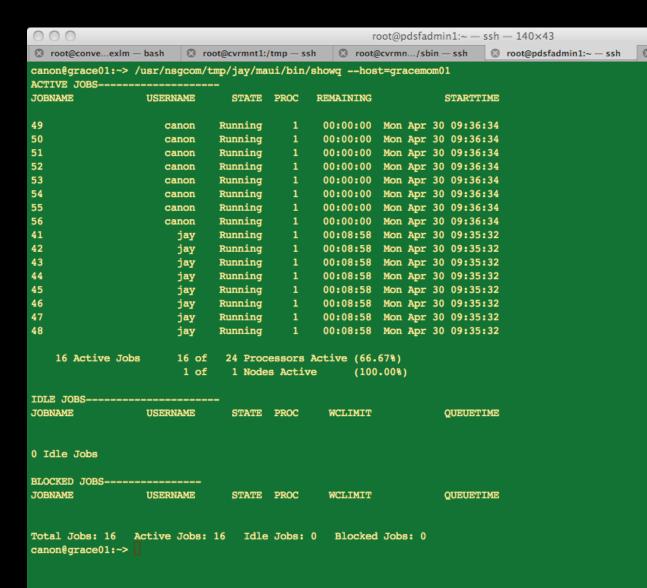
- CCM can be used to "convert" XE-6
 (MPP) compute nodes into standard
 "cluster-like" nodes with a regular
 Linux environment.
- To run a serial workload on these "CCM nodes" requires they be accessible as regular cluster nodes to the batch system
 - This cannot be done using the regular batch system
 - This requires starting up a separate batch system instance
 - Done using a special CCM "job" which starts up the server and client daemons

 the server is started up on the standard XE-6 MOM nodes, and the clients are on the XE-6 CCM compute nodes



Mechanics of running a shared-node serial workload

- "Special" user submits a job to the ccm_queue, asking for as many nodes as required to handle a serial workload (subject to CCM limits), and for the maximum time allowed.
- "Special job" starts up pbs_server on XE-6 MOM node with alternate ports
- Job then runs pbs_mom on allocated CCM compute nodes (under alternate ports)
- Job starts up scheduler (Maui or pbs_sched) which communicates with the alternate resource manager (RM)
- At this point, other users (user1, user2, etc) can submit jobs to the CCM compute nodes (which have now been essentially repurposed as a separate cluster supporting a serial workload)



grace01 j/jay> /usr/nsgcom/tmp/jay/torque/bin/qstat -n @gracemom01:35000

nid00002:35000:

000

							Req'd	Req'd		Elap
Job ID	Username	Queue	Jobname	SessID	NDS	TSK	Memory	Time	s	Time
41.nid00002 nid00008/0	jay	serial	tst.job	22129		1		00:10	R	00:04
42.nid00002 nid00008/1	jay	serial	tst.job	22132		1		00:10	R	00:04
43.nid00002 nid00008/2	jay	serial	tst.job	22135		1		00:10	R	00:04
44.nid00002 nid00008/3	jay	serial	tst.job	22138		1		00:10	R	00:04
45.nid00002 nid00008/4	jay	serial	tst.job	22153		1		00:10	R	00:04
46.nid00002 nid00008/5	jay	serial	tst.job	22199		1		00:10	R	00:03
47.nid00002 nid00008/6	jay	serial	tst.job	22233		1		00:10	R	00:03
48.nid00002 nid00008/7	jay	serial	tst.job	22284		1		00:10	R	00:03
57.nid00002 nid00008/16	jay	serial	tst.job	26161		1		00:10	R	
58.nid00002 nid00008/17	jay	serial	tst.job	26166		1		00:10	R	
59.nid00002 nid00008/18	jay	serial	tst.job	26186		1		00:10	R	
60.nid00002 nid00008/19	jay	serial	tst.job	26198		1		00:10	R	
61.nid00002 nid00008/20	jay	serial	tst.job	26239		1		00:10	R	
62.nid00002 nid00008/21	jay	serial	tst.job	26288		1		00:10	R	
63.nid00002 nid00008/22	jay	serial	tst.job	26332		1		00:10	R	
64.nid00002 nid00008/23 grace01 j/jay>	jay	serial	tst.job	26394		1		00:10	R	

bash

Limitations

- Current approach uses a static assignment of nodes.
 - Initial request for CCM nodes needs cannot be changed on the fly, but multiple requests can be made
- CCM communication occurs over TCP/IP, so the high-performance network is not available. (Can't share uGNI)

Other Challenges

- Policy and Fairness Many of the challenges result from policies, not just technical
- I/O and Staging Common Files Python or Perl libraries, large common references, etc
- Porting Moving applications to Cray can be difficult
- Still not like a Cluster No local disk, limited networking

Future Work

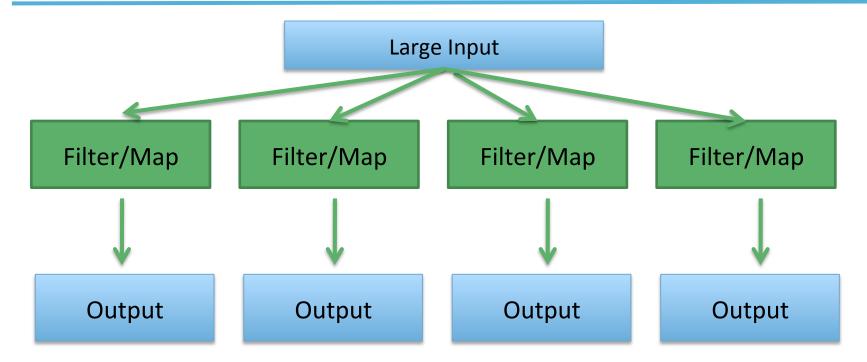
- Continue to Improve CCM/Torque Approach
 - Finish testing and phase into production
 - Dynamically resize serial partition
- Improve Hadoop Implementation
 - Optimize shuffle phase for high-bandwidth network
- Evaluating more fine-grained tasked based Schduler
 - Use of external message queue (i.e. AMQP)

Closing Thoughts

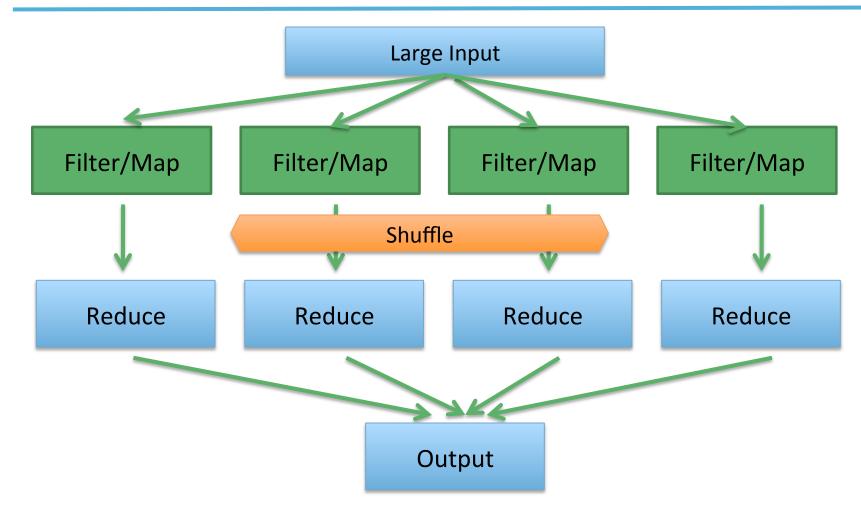
- Increasing demand to support new workloads
 - Driven by improving instruments
 - New classes of modeling and simulation
- NERSC has developed four approaches to supporting new workloads and is exploring others

National Energy Research Scientific Computing Center

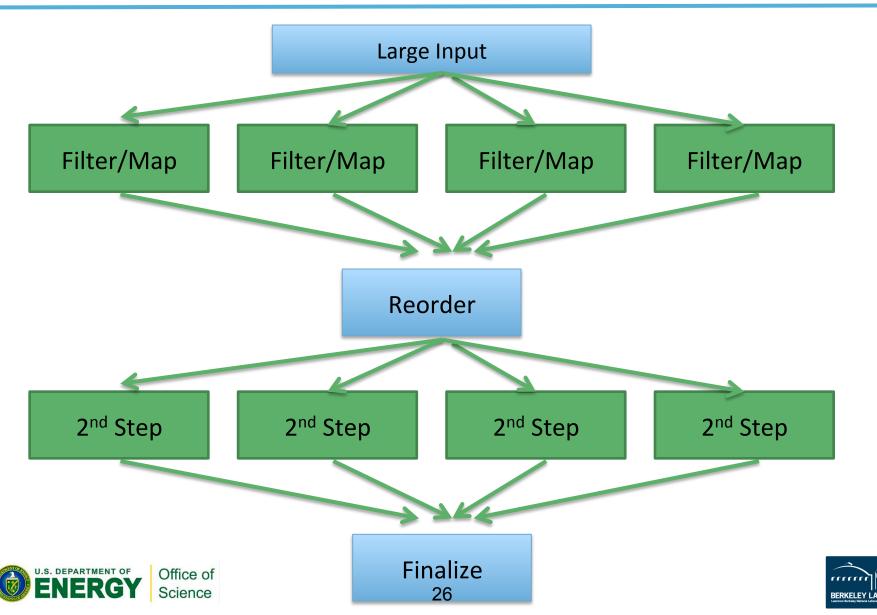
Why does NERSC Support This?


- Users need it
- Important science can be achieved
- Accelerate specific analysis
- Small fraction of a large system is significantly larger than available systems
- Even "Capability" jobs often have through-put oriented components (pre-computing, analysis)

Map/Array Job



Map/Reduce



Complex Workflows

