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Abstract

-New class of data clustering methods for segmentation of
large datasets with graph based structure. The method
combines ideas from classical nonlinear PDE-based image
segmentation with fast linear algebra methods for
computing information about the spectrum of the graph
Laplacian.

-The goal of the algorithms is to solve semi-supervised and
unsupervised graph cut optimization problems.

-Applications are to image processing such as image
labeling and hyperspectral video segmentation

-We detail the OpenMP parallelization and algorithmic
optimization in this presentation



Novel UCLA Data classification algorithms are used to &
find similarities with improved accuracy. m

Classify data sets (sort data into
different classes), so that the
similarity between nodes in one
class is much larger than the
similarity between nodes of
different classes.

Semi-supervised algorithm: have
a small portion of known class
labels.

Unsupervised algorithm: have no
knowledge of class labels at all.
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Example: Classification of
regions in a hyperspectral
image of the earth
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Each pixel contains many data channels
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Two sample data sets (face and plume) and 2
UCLA results using unsupervised algorithms -3

Ground truth Three classes Four classes Five classes
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Data is 1372 x1183 with 148 spectral bands (https://scien.stanford.edu/index.php/faces)

Time =0 sec Time = 15 sec Time = 30 sec

Plume data is 128 x 320 with 129 infrared spectral bands and tracked using four classes
(Chemical plumes released at the Dugway Proving Ground by J. B. Broadwater, et al.)
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Method can be motivated by thinking about how to &
minimize curve around two objects (data classification) NEeF

Move curve to where there
is lots of gradient structure
in the image. Curve length
is minimized. This process is
connected to the total
variation (TV). u is
characteristic function of
domain Q

U= X0

0l ="T

u|Tv

€

~ 5 IVul? + /W )dx = GLc(u)
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Diffuse interface Equations and their sharp &

interface limit  NERSC|

1
Gradient descent of GL function: Ut p— EAU, — —W/ (’U,)
€

First variation of the GL functional gives the Allen-Cahn equation. Famous in
materials science. Now useful for data science.

€ — O Approximates Motion by Mean
Curvature, steep sections move more.

~
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The two step MBO Scheme (1992) improves 2
solution method performance NERsC|

Merriman, Bence, Osher

E—— Cy = {z € RV | u(h,z) > 0}.

U Threshold

iterate

{ us — Au=0 in (0,+o0c) x RY,

R z € Cy,
u(0,2) = { -1, zeRM\C.

Heat equation

Extended to Piecewise Constant Mumford-Shah Model by Esedoglu-Tsai 2006
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PDE Methods were extended by Bertozzi et al.

for similarity graphs for big data problems NEF

PDE Motivated:
Euclidean Space Problem

!

e Minimal surface
problem

* Laplace operator

* Pseudo-spectral
methods

 Fast Fourier Transform
e Uses all the modes

Office of
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Similarity Graphs for Large
Data l

Graph mincut problem
Graph Laplacian

Projection to
eigensubspace of graph
Laplacian

Nystrom extension/
Rayleigh-Chebyshev

Often only needs a smalli
percentage of spectral
modes.




The basic UGLA algorithmic method is fast and 2
accurate for a variety of data applications  NERSC|

I) Create a graph from the data, choose a weight function and
then create the symmetric graph Laplacian.

Il) Calculate the eigenvectors and eigenvalues of the symmetric
graph Laplacian. It is only necessary to calculate a portion of the
eigenvectors*.

lll) Initialize assignment matrix u.

IV) Iterate the two-step scheme (MBO) until a stopping criterion
is satisfied.

*Fast linear algebra routines are necessary — either Raleigh-
Chebyshev procedure or Nystrom extension. We focus on the
Nystrom version for this OpenMP optimization study.
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The workflow of the two algorithms we &
optimize is very similar. NERsC|

 The major difference is that the semi-supervised algorithm
requires fidelity (a small amount of “ground truth”) while the
unsupervised one does not. For very large data sets, we envision
the unsupervised algorithm taking a dominant practical role.

» Step 1. Initialize parameters (total number of pixels, number of
classes...) and read all frames of data file, fidelity(only for semi-

supervised algorithm), initialize the labels of each pixel randomly.

e Step 2. Calculate eigenvectors and eigenvalues using a Nystrom
scheme. Step 2a Parallelize time consuming parts of Nystrom via
OpenMP.

e Step 3. Use Graph MBO or Graph Mumford-Shah algorithm to get
labels of each pixel.

e Step 4. Output the labels of each pixel as classification result.
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&
Unsupervised Graph MBO Algorithm NERsC|

1. Input data matrix f, eigenvector matrix @, eigenvalues {\;}4_;.

2. Initialize u°, a® = @1 - u°
n+1 ni|2
—u ||2

3. While el < o = 0.0000001 do

a. Updating c
S R )
k Tl Uk
b. Heat equation

1
1oa, 2 =a?-(1—dt- )

2. Calculating matrix P, where P; ; = ||f; — ¢;|/3
1

3. y:@-az+§ —dt - uP
c. Thresholding

n+l _ _ a1
u; = ep, T = argmax; y;

d. Updating a
an—|—1 — g_bT . un—|—1
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&
Nystrom Extension Algorithm  NERSC |

* In both the semi-supervised and unsupervised algorithms, we calculate the leading
eigenvalues and eigenvectors of the graph Laplacian using the Nystrom method to
accelerate the computation

* This is achieved by calculating an eigendecomposition on a smaller system of size M
<< N and then expanding the results back up to N dimensions. The computational
complexity is almost O(N).

Wxx Wxy Wx x
W = S W~ Wil (Wyx Wyy) .

Computing Wy x, Wxy = Wik requires only (| X|-(|X|+]Y|) computations
versus (| X| + |Y])? for the whole similarity matrix. The method approximates

Wyvy by Wy x W)}}( Wxy and the error is determined by how much the rows of
W xy span the rows of Wyvy.
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To start the optimization procedure we find
hot spots and use libraries where possible NEF

* Data are in matrix form and require intensive linear
algebra calculations.

 Use LAPACK (Linear Algebra PACKage) and BLAS (Basic
Linear Algebra Subprograms).
— Use of BLAS 3 (matrix - matrix) instead of BLAS 1 (vector — vector)
yields better performance
* VTune analysis — calculating Wxy takes 90% of the
runtime of the Nystrom extension — a good candidate for
OpenMP parallelization.

Office of
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The matrix formed by calculating Wxy in the 2
Nystrom extension takes 90% of the runtime ET-5

Input data matrix Z

ja=1
i10=2
j1=3

= ] I I I ]

oV e e

Ziz  Zio Zj1 Zis

is=N
Nxd

#pragma omp parallel for
for(j = 0; j<N-M; j++)
{

n2 =<Z_j,Z_j>

for(int 1 = 0; i<M; i++){
nl2 = <Z_i,Z_j>;
nl = <Z_1i,Z_i>;
d = 1-n12/sqrt(nl*n2);
Wxy[j*xm+i]=exp(-d/sigma);

Output matrix Wxy
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&
Optimization of the Nystrom Loop 'NERsC

Analysis with VTune shows that the construction of Wyy is the most time consuming phase

We investigate four steps to evaluate performance/optimization

Step A: parallelizing the inner j-loop and BLAS3 optimization on Graph MBO.

Step B: parallelizing the outer j-loop.
Step C: normalizing and forming all Zjs to Xmat.
Step D: using uniform sampling and chunked Y matrices.

.
A
rrrrrrr ‘"'|

& U.S. DEPARTMENT OF Ofﬂce of

EN ERGY Science -16- BERKELEY LAB

T
S 0
' R
A U 8
N



An additional speed up comes from &
reordering loops NERSC |

Step A: Parallelizing the inner j-loop Step B: Parallelizing the outer j-loop

for i=0;i<M;i++ #pragma omp parallel for
m=<Z,Z > for j=1:N—-M
#pragma omp parallel for m=<Z,Z >
for j=1:N—-M for i=1:' M
nio =< Zj, ZJ > ni =< Zj, ZJ >
no =< Zj,Zj> n =< Z,',Z,'>
d=1—-n1p/\/m - n d=1-n1p/\/m-n
Wxy (i,)) = exp(—d/o) Wxy (i,j) = exp(—d/o)
end end
end end

U.S. DEPARTMENT OF Office of
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&
Use Matrix Form and BLAS 2 NERsC

Step C: Calculating Wy, normalize and form all Z;is to Xmat

#pragma omp for

for j=1:N—M
np =< Zj, ZJ >
Nyee = 1— < Xmatazj > /\/E
#Fpragma omp simd aligned
fori=1: M

ny(i,j) — eXp(_nvec/O')

end

end

U.S. DEPARTMENT OF Office of
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ucLA 3

We can form chunks to further optimize .53

Step D: Calculating Wxy using uniform sampling and chunked Y matrices

#pragma omp for collapse(2)
for ychunk = 0; ychunk < m; ychunk + +
for j = chunkstart; j < chunkstop; j+ = subchunksize

#pragma omp simd aligned } subchunk1
for kK = O; k < Subchunksize; k + + }subchunk2}chunk1
} subchunk3

n2vec[k] —< Zj—l—k7 Zj—l—k > —
subchunk1
n2vec[k] — 1/ V n2veC[k] -\ gsubchunKZ}chunKZ

end } subchunk3
n12mar =< Xmar, Ysubmatj > .
#pragma omp simd aligned :

for i =01 < m;i+ +
for k = 0; k < subchunksize; k + +
d=1—nl2.[i, k] - n2yec[K]
Wxy (i,j+ k) = exp(—d/o)

end Choosing the sub-chunk size. Too small, wastes potential of combining expensive operations. If it is too
large, the sub-chunk may run out of lower level cache and needs to be put into the higher cache levels, up
U.S. DEPARTMENT OF Office of to the point where they spill over into DRAM which may cause a substantial performance hit. The optimal o

EN ERGY . value depends on the cache hierarchy, their respective sizes, their latency and so on.
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Thread affinity settings also affect &
performance NERsC

 We choose the thread affinity setting as “OMP_PROC_BIND
= spread” and
“OMP_PLACES = cores/threads”,
because it uses one hardware thread per core.

 While if we use
“OMP_PROC_BIND = close” and “OMP_PLACES = threads”,
it puts more threads on each physical core and leaves other
cores idle, which affects scaling performance.

-20-



Testing of algorithms is done on Cori Phase | 2
and KNL White Boxes m

Cori Phase I:

Cray XC based on the Intel Haswell multi-core processor. Each

node has 128GB of memory and two 2.3 GHz 16-core Haswell

processors. Each core has its own L1 and L2 caches, with 64 KB
and 256 KB, respectively.

—— == = Knight’s Landing (KNL) Many Integrated Core (MIC) Architecture:
Cray XC40 with Knights Landing  The system has 64 cores with 1.3 GHz clock frequency. Each core
has two 512 bit-wide vector processing units. 16GB on package
memory are shared between all cores. The 512 KB L2 cache is
shared between two cores and 16 KB L1 cache is private to the
core.

Theoretical Peak performance: Phase | Haswell: 1.92 PFlops/sec; Phase Il KNL: 27.9 PFlops/sec.
* Total compute nodes: Phase | Haswell: 1,630 computes nodes, 52,160 cores total (32 cores per node);

Phase Il KNL: 9,304 compute nodes, 632,672 cores in total (68 cores per node).

* Cray Aries high-speed interconnect with Dragonfly topology (0.25 ps to 3.7 us MPI latency, ~8GB/sec
MPI bandwidth)

* Aggregate memory: Phase | Haswell partition: 203 TB; Phase Il KNL partition: 1 PB.

* Scratch storage capacity: 30 PB

(Open for first testing this morning !!) o
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Optimization Results ‘NERsC

400

M /0 M Graph MBO
.. Nystrom Serial & Nystorm Loop
300
)
£ 200
=
c
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Original StepA StepB StepC StepD

Step A: parallelizing the inner j-loop and BLAS3 optimization on Graph MBO.
Step B: parallelizing the outer j-loop.

Step C: normalizing and forming all Z;s to Xat-

Step D: using uniform sampling and chunked Y matrices.
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Nystrom Loop Scaling: Cori Phase 1 Results [0

Run Time (s)
>

(=

,,,,,,,

©
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—— Step B
—o—Step C
—A— Step D
—w— ldeal Scaling

= N H 00

1 2 4 8 16 32
Number of Threads
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KNL (our white boxes) are latest from Intel
with lots of cores with in package memory

Knights Landing Overview
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PCle
Gen 3

w
w

Tile
36 Tiles
connected by
2D Mesh
Interconnect
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MCDRAM MCDRAM

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW
DDR4: 6 channels @ 2400 up to 384GB

10: 36 lanes PCle Gen3. 4 lanes of DMI for chipset

Node: 1-Socket only

Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM : 400+; DDR: 90+

Source Intel: All products, computer systems, dates and figures specified are preliminary l;asad 0N.&
are subject to change without notice. KNL data are preliminary based on curlul expectg

without notice. 1Binary Compatible with Intel Xeon processors using Hasw
mmbersmbasedonSTREAM—llkemumm patter i




Connecting tiles

KNL Mesh Interconnect

MCDRAM

MCDRAM
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EDC

MCDRAM

MCDRAM

Mesh of Rings

Every row and column is a (half) ring
YXrouting:GoinY = Turn 2> Goin X

Messages arbitrate at injection and on
turn

Cache Coherent Interconnect

DDR I
o]

MESIF protocol (F = Forward)
Distributed directory to filter snoops

Three Cluster Modes
(1) All-to-All (2) Quadrant (3) Sub- NUMA "

Clustering

i
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Network interface Chip in the

KNL w/ Intel® Omni-Path

Omni-Path Fabric integrated on package

Omni
Path
. ports
DDR 100
Gb/s/
port

First product with integrated fabric

Connected to KNL die via 2 x16 PCle* ports N

Output: 2 Omni-Path ports X4 PCle
= 25 GB/s/port (bi-dir)

Benefits

» | ower cost, latency and power
* Higher density and bandwidth
* Higher scalability

*On package connect with PCle semantics, with MCP ogtlmlzatlons for physical layer

Sve ”ma%?odam (i-Fot &hlps 2015 KNL talk - — BERKELE“"‘B 6
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Knights Landing Integrated On-Package Memory [T 50

Cache
Model

Flat
Model

Hybrid
Model

Let the hardware automatically
manage the integrated on-package
memory as an “L3” cache between
KNL CPU and external DDR

Manually manage how your
application uses the integrated on-
package memory and external DDR
for peak performance

Harness the benefits of both cache
and flat models by segmenting the
integrated on-package memory

Near

Near

HBW HBW
In-Package In-Package
Memory Memory

In-Package

In-Package
Memory Memory

HBW HBW
In-Package In-Package
Memory Memory

Package

Far

_
p—

Top
View

Side
View

Maximum performance through higher memory bandwidth and
flexibility
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Nystrom Loop Scaling: KNL Results 'NERsC

—i— Step B
—@—Step C
—A— Step D
—v— Ildeal Scaling

050, YN
1 2 4 8 16 32 64

Number of Threads
ENERGY  sconce
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Arithmetic Intensity & Roofline Model: where &
we lie in terms of absolute performance NERSC|

Arithmetic intensity is the ratio of computational speed (FLOP’s) to data movement (Bytes)
Nystrom loop runs at 300 GFLOP’s and 23 GB/s of DRAM bandwidth giving 13 FLOPs/Byte

Use Roofline Toolkit (https://bitbucket.org/berkeleylab/cs-roofline-toolkit) to generate
bounding “ceilings” on performance

10000 ¢

Use Intel’s Software Development
Emulator Toolkit (SDE) to record
FLOP’s and Intel’s VTune Amplifier
to collect data movement when
running on 32 cores of a Cori
Phase | node

1000 |-

GFLOPs / sec

100 -

0.01 0.1 1 10 100
FLOPs/Byte
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Conclusions NERSC |

* New class of data clustering methods for segmentation
of large datasets with graph based structure

 Fast and accurate method combines ideas from classical
nonlinear PDE-based image segmentation with linear
algebra methods

* The algorithms can solve semi-supervised and
unsupervised graph cut optimization problems

 We give results for hyperspectral video segmentation

* OpenMP parallelization with algorithmic optimization
yields nearly ideal scaling on Haswell and KNL
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