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ABSTRACT: Magnetic fusion is a long-term solution for producing electrical power
for the world, and the large thermonuclear international device (ITER) being constructed
will produce net energy and a path to fusion energy provided the computer modeling
is accurate. To effectively address the requirements of the high-end fusion simulation
community, application developers, algorithm designers, and hardware architects must have
reliable simulation data gathered at scale for scientifically valid configurations. This paper
presents detailed benchmarking results for a set of magnetic fusion applications with a
wide variety of underlying mathematical models including both particle-in-cell and Eulerian
codes using both implicit and explicit numerical solvers. Our evaluation on a petascale
Cray XE6 platform focuses on profiling these simulations at scale identifying critical
performance characteristics, including scalability, memory/network bandwidth limitations,
and communication overhead. Overall results are a key in improving fusion code design,
and are a critical first step towards exascale hardware-software co-design — a process that
tightly couples applications, algorithms, implementation, and computer architecture.
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I. INTRODUCTION

Fusion energy research is a complex, international endeavor,
with the next magnetic-fusion plasma confinement device
(ITER [1]) to cost in excess of $10B. Prior to the construction
of any such large device, there is a need to understand
performance as it relates to device parameters in order to
arrive at an optimum for demonstrating the next step to fusion
energy. Consequently, no experimental campaign will be ap-
proved without extensive computations in advance. Thus, the
high-fidelity modeling to come from exascale computing will
provide major guidance for ITER and beyond. The dominant
challenge in fusion modeling is to accurately simulate the
wide range of temporal and spatial scales that are coupled
in an experimental device. To address this challenge, the
fusion community has developed sets of equations to address
these scales, which have in turn led to the development of
numerous independent computational applications covering
different physics, scales, and regions. Such a computational
component view will be crucial for extracting science from

computations, as the massive range of physical scales cannot
be modeled by brute force even at the exascale.

Fusion computation is enormously difficult because of the
wide range of scales in fusion devices. In fusion plasmas
the fastest physical time-scale is set by electron gyro-motion,
which, at the planned 6 T toroidal field, has a period of
6× 10−12s, while the discharge is expected to last more than
103s, resulting in a need to compute of order 1015 fundamental
periods. Length scales also have enormous variation, the
plasma shielding length being of order micrometers in the
edge, while the plasma is of order 5 m across. Thus, the spatial
scales span roughly 6-7 orders of magnitude. The product of
these scale variations (cubed for spatial) is 1033 – an over-
whelmingly large number. Direct simulation of all scales using
the most fundamental equations is not possible on existing or
any foreseeable computational platforms. Consequently, the
fusion community has, over decades, developed a suite of
models for tokamaks (and other confinement devices).

This work presents the first study to evaluate and ana-
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lyze the behavior of several key fusion application models
at scale. Specifically we examine four simulation codes on
the Cray XE6 Hopper, a leading petascale supercomputing
system: GTS [2], [3] which solves the gyrokinetic equation by
following the guiding center orbits in flux coordinates, with the
associated Poisson-solve, discretized according to an integral
method; TGYRO [4], which encapsulates the GYRO [5],
[6] and NEO [7] codes to compute turbulent and collisional
transport coefficients; BOUT++ [8], a 3D finite-difference
code for tokamak edge plasma turbulence that is flexible in
terms of the specific moment equations that are implemented;
and the VORPAL [9] computational framework that computes
the dynamics of plasmas, accelerators, and electromagnetic
structures with wide usage across multiple plasma physics and
electromagnetics application areas.

Detailed performance results are presented in terms of per-
formance, scalability, communication behavior, and memory
bandwidth sensitivity. The performance analysis of these codes
is critical for application scientists, algorithm developers, and
computer architects to understand and improve the behavior
of next-generation fusion codes, while providing an important
first step toward an integrated hardware/software co-design of
optimized fusion simulations.

II. EXPERIMENTAL METHODOLOGY

A. Application Suite
For this work, we examine the performance and scalabil-

ity of four key apps for fusion simulation: GTS, TGYRO,
BOUT++, and VORPAL. Each application plays a different
role in fusion simulation.

B. Cray XE6 “Hopper”
Hopper is the newest Cray XE6 built from dual-socket,

12-core “Magny-cours” Opteron compute nodes. In reality,
each socket (multichip module) has two dual hex-core chips,
making each compute node effectively a four-chip compute
node with strong NUMA properties. Each Opteron chip instan-
tiates six superscalar, out-of-order cores capable of completing
one (dual-slot) SIMD add and one SIMD multiply per cycle.
Without proper SIMD code generation, instruction-level paral-
lelism, or high arithmetic intensity, it will be difficult to attain
10% of this throughput. Additionally each core has private
64 KB L1 and 512 KB L2 caches. L2 latency is small and
easily hidden via out-of-order execution. The six cores on a
chip share a 6 MB L3 cache and dual DDR3-1333 memory
controllers capable of providing an average STREAM [10]
bandwidth of about 2.0 GB/s per core. Each pair of compute
nodes (8 chips) shares one Gemini network chip. Like the XT
series, the Gemini chips of the XE6 form a 3D torus. The
MPI pingpong latency is typically 1.6 µs and, when using 4
or more MPI tasks per node, the MPI bandwidth is 9.0 GB/s.

C. Programming Model
All codes studied in this paper use the flat MPI pro-

gramming model except for GTS, which has the hybrid
MPI+OpenMP programming model implemented. In the case
of Hopper, this implies one MPI process on each core (24
processes per node).

D. Performance tools

In order to measure performance characteristics, it is nec-
essary to instrument the code with an approriate performance
tool to give pertiment information (such as HWC, MPI statis-
tics, the role played by synchronization calls, cache usage,
etc.). In our performance experiments, in addition to recording
the runtimes we also instrument them using the Integrated
Performance Monitoring (IPM) framework [11], [12], or Cray-
PAT [13] for the four different applications profiled.

IPM provides an easy to use, low overhead mechanism
for obtaining information about the MPI performance char-
acteristics of an application. It uses the profiling interface
of MPI (PMPI) to obtain information about the time taken
and type of MPI calls, the size of the messages sent and the
message destination. Previous measurements have shown that
the overhead of using IPM is significantly less that 1%, which
makes us confident we are not perturbing the applications
by instrumenting them. Instrumenting the code with IPM is
a relatively simple matter of adding a linker line for the
IPM library. Three of the four codes profiled (GTS, TGYRO,
VORPAL) used IPM to obtain performance measurements.

CrayPAT is a high-level performance analysis tool for pro-
filing codes in Cray architectures. These tools provide a simple
interface to hardware counter and other instrumentation data.
After loading the appropriate CrayPAT modules (available
on NERSC machines via the perftools module, which loads
associated modules and declares environment variables), users
may rebuild their code, instrument the executable with the
pat build command, and receive reports from their application
runs. CrayPAT captures performance data without the need for
source code modifications. Event tracing was used to gather
data during these experiments. Tracing records events at func-
tion entry and exit points, rather than interrupting execution
periodically to capture events. Various function groups may
be traced (e.g., MPI, heap, PGAS) for performance. CrayPAT
leverages hardware-level performance counters, by means of
the Performance API (PAPI) library, which can give such
performance information as floating point instructions and
cache usage.

For the BOUT++ application we used the CrayPAT profiling
infrastructure to obtain performance information. Although
CrayPAT overhead can be significant if a large number of
function groups are monitored, in the current runs only MPI
performance was monitored, which resulted in negligible over-
head (< 1%). CrayPAT also has some support for PGAS
languages (so far, implemented only in GTS). However, it
was seen that the overhead associated with monitoring them
was considerable, and we have therefore postponed PGAS
performance analysis to the future.

Both IPM and CrayPAT provide options to instrument
code (invasively) so as to focus attention to particular sec-
tions, where necessary. During the runs, we ensured that
the initialization region was discarded from the performance
measurements. This is most important in the GTS code, where
it was seen that initialization overhead is disproportionately
large for the PETSc library, to which the code links. However,
for the other codes, the initialization was not seen to consume
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much time.

E. DRAM Bandwidth Sensitivity

The memory wall is a well-known impediment to
application-performance. Nominally, it comes in two forms:
latency-limited and bandwidth-limited. The former is an ar-
tifact of the latency to DRAM (measured in cycles), far
outstripping the ability for a core to inject sufficient memory-
level parallelism to satisfy Little’s Law. For many codes, this
has been mitigated by hardware stream prefetchers, multiple
cores, and good programming practices. The latter, memory
bandwidth, is a more fundamental impediment arising from
the fact that cores can process data faster than the memory
subsystem can supply it. Recent history and technology trends
indicate that this imbalance is only going to get worse. To that
end, it is imperative we understand how existing applications
fare when confronted with reduced memory bandwidth.

To proxy this phenomenon, we increase the number of cores
contending for the finite DRAM bandwidth. As Hopper is built
from 6-core chips, by increasing the number of active cores per
chip from 1 to 6, we reduce the per-core bandwidth from about
12GB/s to 2GB/s. By using aprun’s default behavior, we
fill all cores within a compute node’s first NUMA node with
processes before moving to a compute node’s second (, third,
or fourth) NUMA node. Thus, by confining the number of
processes per node to between 1 and 6 for flat MPI codes, we
can scale the number of processes per chip and thereby test the
application’s sensitivity to reduced bandwidth. Similarly, by
confining the number of processes per node to 1 and varying
OMP_NUM_THREADS from 1 to 6, we can realize the same
effect on hybrid applications.

In general, if performance remains constant as we reduce the
bandwidth per core, then we may conclude that the application
is relatively insensitive to memory bandwidth. Conversely,
if run time increases linearly with reduced bandwidth, we
may conclude the application’s performance is dominated by
memory bandwidth [14]. In practice applications are built
from multiple kernels, some will be memory-intensive, others
will be compute-intensive. When plotted, time should be a
linear function with an offset. The relationship between offset
and slope is indicative of the room for additional cores or
performance optimization. If there is little, it is imperative
that application designers develop and integrate new methods
lest future performance be limited by the lethargic trends in
memory bandwidth. In these experiments, concurrency is kept
low to ensure MPI communication does not skew our analysis.

III. GTS

GTS solves the gyrokinetic equations by following the
guiding centers of particle orbits using the particle-in-cell
(PIC) method. In PIC codes, rather than directly modeling the
pairwise interactions between particles, particles interpolate
charge onto a grid, one solves Poisson’s equation to determine
the electrostatic potential, and uses the potential to accelerate
and move particles. To account for gyrating particles, GTS
models particles with a charged ring and interpolates this ring
onto the charge grid using a 4-point averaging scheme. The

Concurrency MPI- OpenMP
processes threads/node

384-49,152 64-8192 6
particles

cores processes ntoroidal npartdom micell per process
384 64 32 2 40 ∼3M
768 128 32 4 80 ∼3M
1536 256 32 8 160 ∼3M
3072 512 32 16 320 ∼3M
6144 1024 32 32 640 ∼3M

12288 2048 32 64 1280 ∼3M
24576 4096 32 128 2560 ∼3M
49152 8192 32 256 5120 ∼3M

TABLE I
OVERVIEW OF SIMULATION PARAMETERS USED IN GTS SCALING

EXPERIMENTS ON CRAY XE6 HOPPER SYSTEM

Poisson solve is implemented using PETSc. GTS has 3 levels
of parallelism: a one-dimensional domain decomposition in
the toroidal direction, a particle decomposition within each
poloidal domain, and finally loop-level multi-threading. The
domain and particle distributions are implemented with MPI,
while the loop-level multi-threading is implemented using
OpenMP directives.

A. Simulation Parameters

In GTS, weak scaling experiments were conducted on the
NERSC Hopper machine by keeping the number of particles
per process constant while maintaining a constant overall
grid resolution for all concurrencies. Thus the time spent
operating on particles is expected to be roughly constant,
while the overhead of reducing each copy of the poloidal
plane is expected to scale with the number of processes.
The Poisson solve’s overhead is expected to decrease with
increased concurrency as the size of the grid remains constant.

As each Hopper compute node is effectively 4 NUMA nodes
each of 6 cores, we limit OpenMP parallelism to 6-way to
avoid NUMA issues. Experiments scale up to 8,192 processes
(each using 6 threads) for a total of 49,152 cores. A summary
of pertinent input parameters for the scaling experiments is
listed in Table I. Notably, the number of toroidal domains
is kept constant at 32 and the number of particle domains is
varied between 2 and 256. Thus, the number of MPI processes
(which is the product of the number of toroidal and particle
domains) is varied between 64 and 8,192, together with 6
OpenMP threads being used per MPI process. For the weak
scaling experiments, the number of particles per MPI process
is kept constant at 3M, which is achieved by varying the
number of particles per cell (micell) in proportion with
the number of particle domains. However, for the DRAM
bandwidth tests, we use 150K particles per MPI process.

B. Scalability and Analysis

Performance for the GTS weak scaling experiments is
shown in Figures 1(a) and 1(b). Figure 1(a) presents the time
(measured in seconds) spent in computation and communi-
cation running GTS with increasing levels of concurrency.
Figure 1(b) reveals the GTS runtime behavior for a similar
range of concurrencies (x-axis) as depicted in Figure 1(a), but
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Fig. 1. GTS Performance Characteristics on the Cray XE6. Figures 1(a), 1(b) show weak scaling performance degradation at higher concurrency from
increased communication overhead. Figure 1(a) shows overall walltime, time spent in communication and time spent in computation. Figure 1(b) presents
the flops performance (Y-axis on left) and the communication as percentage of runtime (Y-axis on right). Figure 1(c) shows the role of collectives in the
breakdown of MPI functions at high concurrency (49,152). Figure 1(d) shows the effects of DRAM bandwidth contention.

highlights the GTS overall performance (“Performance (ex-
periment)”) in flop/s (normalized to a per core basis, vertical
values correspond to the left y-axis). Figure 1(b) also gives
the ratio of communication time (“%Communication”) to the
GTS wall-clock time (vertical values correspond to the right
y-axis). Results show the increasing communication overhead
in GTS with higher levels of concurrency. In addition, we can
see that the runtime first decreases at higher scale, but then
begins to rise at 6,144 processing cores.

GTS consists of both particle based (PIC) kernels and a grid-
based Poisson kernel. However, weak-scaling is only applied
in the context of the PIC kernels, while the grid-based Poisson
solver exhibits strong-scaling behavior that reaches a perfor-
mance plateau at 6,144 processors. Beyond a concurrency
of 6,144, the influence of the Poisson step becomes mostly
insignificant, and subsequent scaling is dominated by the PIC
kernels. Unfortunately, the 1D grid decomposition strategy
necessitates a “replicate-and-reduce” approach to PIC. Thus,
the reduction of per-process copies of poloidal planes into one
plane results in a increase in communication time. These two
scaling trends (Poisson solve and reductions) result in the de-
creasing computation trend and the increasing communication

trend shown in Figure 1(a). The sum of these two scaling
trends results in a minimum at around 6K cores. To verify
this, we inspect the time spent in the reduction collective
(MPI_Allreduce) and show that at extreme scales, it is
the dominant communication routine (Figure 1(c)). The net
result is that communication time eventually reaches more
than 40% of the run time. This depresses the average flop
rate significantly.

An examination of MPI communication for the highest
concurrency experiment running at 49,152 processing cores
(Figure 1(c)) reveals the most time consuming MPI functions -
MPI Allreduce and MPI Sendrecv. MPI functions with lower
impact on overall communication time (< 5%) are exempt
from this analysis. The above mentioned reduction of per-
process copies of poloidal planes requires communication
intense MPI reduction operations at each GTS iteration step.
Besides an increasing memory footprint due to the “replicate-
and-reduce” approach, the increasing communication overhead
of grid reduction operations makes a 2D domain decomposi-
tion necessary in GTS towards scaling to higher concurren-
cies. The Sendrecv communication originates from shifting
particles between adjacent toroidal domains due to the one-
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dimensional domain decomposition in the toroidal direction.
Advanced communication techniques such as one-sided mes-
saging (Partitioned Global Address Space languages or the
MPI-2 extensions) or non-blocking MPI send and receive
functions might reduce the costs of this phase in GTS.

C. DRAM Bandwidth Sensitivity

The sensitivity to DRAM memory bandwidth contention
is tested by running the codes for a given concurrency (the
number of MPI processes is constant in this experiments) but
by spreading these MPI processes over different nodes. Using
this approach, the contention for memory bandwidth in a given
node can be varied. Where applicable (only GTS has OpenMP
implemented) OpenMP threading is turned off, so that only
pure MPI is used. The number of cores used per node are
thus varied from 1 to 6. A notable aspect here is that one
must pack the MPI processes within an individual NUMA
node containing 6 cores, thereby ensuring that the experiment
adequately measures bandwidth contention. In that respect, it
would be inaccurate to distribute the MPI processes in different
nodes since they would then not compete for bandwidth.
And hence, although a hopper node consists of 24 processing
cores, the most straight forward configuration for a memory
bandwidth contention experiment is the foregoing. Distributing
MPI processes in different NUMA nodes might bring in
other aspects into play, such as the inter-node communication,
which are not particularly germane to the task of measur-
ing sensitivity to bandwidth. Memory bandwidth contention
experiments in GTS indicate that the code is affected by
bandwidth contention, as seen from figure1(d). The runtime
increases (or equivalently, the flops would decrease) as as more
cores per NUMA node are used, implying increased bandwidth
contention by the MPI processes in the NUMA node. We
see run time increase by about 66% when all 6 cores in the
NUMA node contend for bandwidth. Moreover, as contention
is increased we see the application spends progressively more
of its run time in bandwidth-intensive routines (from about
14% up to 50%). Such a strong corelation to bandwidth will
impede its ability to exploit more cores or optimization.

IV. TGYRO

TGYRO is a transport-timescale framework used to manage
multiple instances of the GYRO [5], [6] and NEO [7] codes
in order to obtain steady-state plasma profiles given known
heating sources. GYRO and NEO (both Eulerian codes) com-
pute the turbulent (gyrokinetic) and collisional (neoclassical)
transport, respectively. GYRO, which is the overwhelmingly
dominant part of the cost in TGYRO, uses either an explicit
or semi-implicit time disretization and a 5D phase-space dis-
cretization using a mixture of finite-difference, finite-element,
spectral, and pseudo-spectral methods. The algorithms are
described in complete detail in the GYRO Technical Manual
[5]. Dense and sparse linear solvers are hand-coded using
LAPACK and UMFPACK/MUMPS, respectively. Depending
on scale, either hand-coded convolution or FFTW is used to
evaluate the nonlinear Poisson bracket.

A. Simulation Parameters

We conducted weak scaling experiments on TGYRO rang-
ing from 128 to 131,072 processes. Because of a nonlinear
convolution operation in toroidal harmonics, the total work
performed in this scan is a weakly nonlinear function of
problem size.

B. Scalability and Analysis

Performance figures for the TGYRO weak scaling exper-
iments are presented in Figures 2(a) and 2(b). We observe
a marked degradation in overall performance beyond 2K
processes (less than 60% parallel efficiency at 8K cores, and
about 30% at 131K cores). We observe that although the
computation time remained roughly constant across this range,
the communication time grew quickly and ultimately begins to
impede scalability. Application-level performance degradation
is observed when this increase becomes a critical bottleneck
(over 50% of the runtime). Despite a slight increase due to the
convolutions, the computation time remained relatively flat.

The breakdown of MPI calls in Figure 2(c) at highest
concurrency of 131,072 processes indicates that MPI col-
lective communication – MPI Alltoall, MPI Allreduce and
MPI Bcast – constitutes a major overhead. The large number
of MPI Alltoall calls are likely to be latency limited due to
their small message sizes ( 2KB).

C. DRAM Bandwidth Sensitivity

Figure 2(d) shows that as the number of processes per
NUMA node increases, contention for DRAM bandwidth re-
sults in an increase in runtime. A linear extrapolation suggests
that with 1 process per NUMA node, bandwidth plays a
relatively small (less than 8%) part in performance. However,
as the number of processes per NUMA node grows to 6, we
see more than a 60% increase in runtime. At that point, perhaps
half the runtime is due to the a lack of scaling on a bandwidth-
instensive component of the application. Thus, with 6× the
active cores, we see only 3.5× the aggregate performance per
NUMA node.

V. BOUT++ RESULTS

BOUT++ [8] is a 3D finite-difference structured grid code
used to model collisional edge plasmas in a toroidal/poloidal
geometry. Time evolution is primarily through the implicit
Newton Krylov method. A range of finite difference schemes
are used, including 2nd and 4th order central difference, 2nd

and 4th order upwinding and 3rd order WENO. Several dif-
ferent algorithms are implemented for Laplacian inversion of
vorticity to get potential, such as a tridiagonal solver (Thomas
algorithm), a band-solver (allowing 4th order differencing),
and the Parallel Diagonal Dominant (PDD) algorithm. The
code uses a 2D parallelization in the x, y directions. There
is no parallelization in the z direction. This is transformed
into the tokamak coordinate framework ψ, θ, ζ by means of a
“ballooning” transformation [15], [16].
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Fig. 2. TGYRO Performance Characteristics. Figures 2(a), 2(b) show weak scaling performance degradation at higher concurrency from increased
communication overhead. Figure 2(a) shows overall walltime, time spent in communication and time spent in computation. Figure 2(b) presents the flops
performance (Y-axis on left) and the communication as percentage of runtime (Y-axis on right). Figure 2(c) shows the role of collectives in the breakdown
of MPI functions at the highest concurrency run (131,072).. Figure 2(d) shows bandwidth contention effects.

A. Simulation Parameters

In BOUT++, strong scaling experiments runs are carried
out by keeping the total number of grid points in the ra-
dial, poloidal and toroidal directions constant. Unlike other
applications discussed in this paper, BOUT++ is evaluated
in the strong scaling regime as that is how the developers
typically use it. The experiments are conducted on up to
65,536 processor cores. Since the domain decomposition is
in the toroidal and poloidal directions (2D), the size of each
MPI subdomain becomes smaller with increased concurrency,
resulting in more boxes with a fewer number of grid points
per MPI box. This results in an increase of the surface to
volume ratio (at the highest concurrency of 65,536 there
are only two grid points in the poloidal direction). Clearly
it may be inefficient to run at this regime, but nonetheless
provides an interesting insight into performance trends at high
concurrency.

B. Scalability and Analysis

Performance for the strong scaling experiments are pre-
sented in Figures 3(a) and 3(b). Note, Figure 3(a) is plotted

on a log-log scale. We observe good scaling behavior to about
8,192 cores and slight performance degradation at higher levels
of concurrency. More detailed analysis shows that BOUT++
performs more calculations than expected for a perfectly
strong-scaled experiment. This will be a subject of future
investigations.

Examining BOUT++ communication overhead in Fig-
ures 3(a) and 3(b) shows that computation time scales well
to about 16K cores, while communication time begins to
plateau at around 4K cores. In fact, the fraction of time
spent in communication rapidly increases beyond 2K cores.
Interestingly, it saturates at about 20% of the runtime at 16K
cores and beyond. As the parallelization scheme reaches its
limits, we believe the communication overhead is likely an
artifact of the asymptotic limits to the surface to volume
ratio. 3D decompositions or threaded implimentations may
mitigate the impact of communication. Future work will
explore optimization opportunities within the computational
and communication components.
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Fig. 3. BOUT++ Performance Characteristics on the Cray XE6. Figures 3(a), 3(b) show strong scaling performance degradation at higher concurrency.
Figure 3(a) shows overall walltime, time spent in communication and time spent in computation. Figure 3(b) presents the flops performance (Y-axis on left)
and the communication as percentage of runtime (Y-axis on right). MPI communication time and percentage do not grow at high concurrency demonstrating
that performance degradation at high concurrency is related to the increasing time spent in computation. Figure 3(c) shows the role of MPI collectives at high
concurrency (65,536). Figure 3(d) illustrates that BOUT++ is relatively insensitive to bandwidth contention.

C. DRAM Bandwidth Sensitivity

Figure 3(d) shows the run time as we increase the number
of active cores per chip, or in other words, increase contention
for the limited per-chip DRAM bandwidth. Although we
observe a linear relationship, a breakdown into bandwidth- and
non-bandwidth-intensive components suggests the application
initially spends 99% of its time in the non-bandwidth-intensive
component. As the number of active cores increases, perfor-
mance per chip increases quickly, and this faction drops to
perhaps 96%. Clearly, DRAM bandwidth plays a small role
in BOUT++ performance.

VI. VORPAL RESULTS

The VORPAL computational framework [9] models the
dynamics of plasmas, accelerators, and electromagnetic struc-
tures including RF heating [17] in fusion plasmas. Like
GTS, VORPAL can the particle-in-cell (PIC) method to track
individual particles, except that VORPAL does not use the
4-point charge ring averaging scheme. However, these runs
were pure electromagnetic computations, without particles.
VORPAL uses a 3D cartesian domain decomposition using

MPI, such that one may construct the domain as a collection
of rectangular slabs in three dimensions. Each domain is
described by two slabs, one which is referred to as the
physical region, which contains all the local cells of each MPI
process. The other domain, which is referred to as the extended
region, is the physical region plus one layer of guard cells
in each direction. The cells which are communicated between
neighboring processor is simply the slab that is the intersection
of the sending processor’s physical region with the receiving
processors extended region.

A. Simulation Parameters

In VORPAL, weak scaling experiments were run on the
NERSC Hopper machine. The physics being done in these
experiments is the wave propagation in vacuum. For this
particular case, it allows to compute the resonant modes
of a rectangular cavity, but when combined with embedded
boundaries, we can also compute the modes and frequencies
of metallic and dielectric structures to high precision, up to
parts in 105 when combined with Richardson extrapolation.
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Fig. 4. VORPAL Performance Characteristics. Figures 4(a), 4(b) show weak scaling performance degradation at higher concurrency. Figure 4(a) shows overall
walltime, time spent in communication and time spent in computation. Figure 4(b) presents the flops performance (Y-axis on left) and the communication as
percentage of runtime (Y-axis on right). MPI communication time and percentage do not grow at high concurrency (32,768 and 65,536 nodes). Figure 4(c)
shows the role of collectives in the breakdown of MPI functions at high concurrency (65,536). Figure 2(d) shows effects of increased bandwidth contention.

We conducted weak scaling experiments, with a fixed
domain size of 403 cells per MPI-subdomain. There are
no particles, only fields, and those fields are updated using
the Yee scheme. The update is explicit with communication
overlapped by independent computation. There is no global
communication. The only communication is of surface field
values (10088 cells and 30264 field values per field), and
this compares with the volume computation of 64000 cells or
192000 field values per field. Thus, the ratio of communication
to computation remains constant as we scale the number of
processing cores. The underlying experiments were conducted
on up to 65,536 cores on Hopper.

B. Scalability and Analysis
Performance figures for the weak scaling experiments are

presented in Figures 4(a) (wall clock time per time step) and
4(b). We observe linear scaling on up to 16K cores, then a
marked decrease in compute performance. The result depresses
parallel efficiency to about 71%.

The communication overhead, as seen from Figures 4(a)
remains roughly constant with increasing concurrency and rep-
resents a small fraction of the overall time (less than 13%). The

decrease in the time spent in communication is would seem to
be due to an increase in computational overhead. This increase
in runtime at the two highest levels of concurrencies seems
anomalous and will be the subject of future investigations.
Also observed is a small decrease in communication time at
extreme scales, which deserves further investigation as well.

The MPI overhead breakdown chart in Figure 4(c) shows
that communication time is dominated by the MPI Waitany
and MPI Wait routines. This indicates a heavy use of non-
blocking send and receive operations with time being tabulated
in the waits.

C. DRAM Bandwidth Sensitivity

Figure 4(d) visualizes the impact of DRAM bandwidth
contention on performance. We observe a linear increase in
time with respect to concurrency. When studying the ap-
plication breakdown into compute-intensive and bandwidth-
intensive components, we observe that for 6 MPI processes
per NUMA node, roughly two-thirds of the run time is spent
in compute-intensive components. Nevertheless, we observe
a 50% increase in runtime coupled with a 300% increase in
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work, which results in a 2× increase in aggregate performance
per NUMA node.

VII. CONCLUSIONS

In this paper, we examine four key fusion applications at
high levels of concurrencies on the NERSC Hopper Cray
XE6 machine. We observe that each code has its own perfor-
mance characteristics that affect scalability arising from vari-
ous communication patterns. We identify methods to improve
performance of these codes as they move towards exascale
architectures. For example, GTS’s multinode scalability is
affected by the charge grid reductions (a collective operation)
and the effectively strong scaled grid component. Such perfor-
mance bottlenecks can likely be remedied by higher particle
densities or by moving to a 2D or 3D spatial decomposi-
tion. Similarly, the collectives performance in TGYRO will
likely be improved by migrating to a hybrid programming
model. The VORPAL code shows good scalability up to
16K processes, but at that point scaling degrades for this
type of computation (explicit finite-difference time-domain
electromagnetics). The measurements indicate that this is due
to increasing computation per core, but this contradicts what
is known about algorithm, so further study is needed to
investigate these effects. Studying BOUT++ reveals similar
challenges with perfect scaling starting to decline beyond 32K
processes for both communication and computation, however,
this code shows remarkable performance for a fluid-based
algorithm. In the future, it is predicted that weak scaling
may only be important at the node-level and multicore may
dominate in a strong scaling regime. Exciting challenges are
on the horizon as we move to the regime of a potential 100X
increase in on-chip parallelism.

As future manycore architectures will likely see a 10-
100× increase in on-chip parallelism, continued improvement
is required to effectively exploit such parallelism. History
has shown that memory bandwidth is and will be a major
impediment to effective exploitation of multicore. We observe
that GTS is particularly sensitive to memory bandwidth (time
increased quickly with increasing contention) while BOUT++
showed very little sensitivity (time was nearly constant).
To that end, we constructed an experiment that allowed us
to explore each application’s sensitivity to reduced memory
bandwidth, and future studies will include experiments to best
tune each application for the next generation of architectures.
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