Introduction to NERSC Archival Storage: HPSS

Lisa Gerhardt
NERSC User Services
Nick Balthaser
NERSC Storage Systems
NUG Training
February 3, 2014

What is an archive?

Long-term data storage

- Often data that is no longer modified or regularly accessed
- Storage time frame is indefinite or as long as possible
- Archive data typically has, or may have, long-term value to the organization
- NERSC archiving system uses HPSS (high performance storage system) software
- Typical use cases at NERSC include:
 - Long-term storage of very large raw data sets
 - Good for incremental processing
 - Long-term storage of result/processed data
 - Backups (e.g. global scratch purges)

Data growth is exponential

File system space is finite

- 80% of stored data is never accessed after 90 days
- The cost of storing infrequently accessed data on spinning disk is prohibitive
- Important, but less frequently accessed data should be stored in an archive to free faster disk for processing workload

Features of HPSS

- The NERSC archive is a Hierarchical Storage Management system (HSM)
 - NERSC archive supports parallel highspeed transfer and fast data access
- Highest performance requirements and access characteristics at top level
- Lowest cost, greatest capacity at lower levels
- Migration between levels is automatic
- HPSS responds differently than a file system

The NERSC archive is a shared multi-user system

- Shared resource, no batch system. Inefficient use affects others.
- Session limits are enforced

Using HPSS

How to Log In

The NERSC archive uses an encrypted key for authentication

- Key placed in ~/.netrc file at the top level of the user's home directory on the compute platform
- All NERSC HPSS clients use the same .netrc file
- The key is IP specific. Must generate a new key for use outside the NERSC network.

Archive keys can be generated in two ways

- Automatic: NERSC auth service
 - Log into any NERSC compute platform using ssh
 - Type "hsi"
 - Enter NERSC password
- Manual: https://nim.nersc.gov/ web site
 - Under "Actions" drop down, select "Generate HPSS Token"
 - Copy/paste content into ~/.netrc
 - chmod 600 ~/.netrc

Storing and Retrieving Files with HSI

- HSI provides a Unix-like command line interface for navigating archive files and directories
 - Standard Unix commands such as Is, mkdir, mv, rm, chown, chmod, find, etc. are supported
- FTP-like interface for storing and retrieving files from the archive (put/get)
 - Store from file system to archive:

```
-bash-3.2$ hsi
A:/home/n/nickb-> put myfile
put 'myfile' : '/home/n/nickb/myfile' ( 2097152 bytes, 31445.8 KBS (cos=4))
```

Retrieve file from archive to file system:

```
A:/home/n/nickb-> get myfile get 'myfile' : '/home/n/nickb/myfile' (2010/12/19 10:26:49 2097152 bytes, 46436.2 KBS )
```

Full pathname or rename file during transfer:

```
A:/home/n/nickb-> put local_file : hpss_file
A:/home/n/nickb-> get local_file : hpss_file
```

Available on all NERSC systems and you can install on a remote site

NERSC YEARS at the FOREFRONT

Storing and Retrieving Directories with HTAR

- HTAR stores a Unix tar-compatible bundle of files (aggregate) in the archive
 - Traverses subdirectories like tar
 - No local staging space required--aggregate stored directly into the archive
- Recommended utility for storing small files
- Some limitations
 - 5M member files
 - 64GB max member file size
 - 155/100 path/filename character limitation
 - Max archive file size* currently 20TB
- Syntax: htar [options] <archive file> <local file | dir>
 - Store
 - -bash-3.2\$ htar -cvf /home/n/nickb/mydir.tar ./mydir
 - List
 - -bash-3.2\$ htar -tvf /home/n/nickb/mydir.tar
 - Retrieve
 - -bash-3.2\$ htar -xvf /home/n/nickb/mydir.tar [file...]
 - * By configuration, not an HPSS limitation
- Available on all NERSC systems and you can install on a remote site

Archiving with Globus

- Globus is a user-friendly interface for managing gridFTP data transfers
 - Both web and CLI transfer management interfaces are supported
 - Web-enabled data transfer: https://www.globus.org
- Uses grid credentials instead of standard ~/.netro authentication
- Caveats
 - More work is needed to make the Globus interface more robust
 - Globus can behave in ways that are not optimal for HPSS

Globus Web Transfer

Web initiated transfer

Avoiding Common Mistakes

Small Files

- Tape storage systems do not work well with large numbers of small files
 - Tape is sequential media—tapes must be mounted in drives and positioned to specific locations for IO to occur
- Mounting and positioning tapes are the slowest system activities
 - Small file retrieval incurs delays due to high volume of tape mounts and tape positioning
 - Small files stored periodically over long periods of time can be written to hundreds of tapes—especially problematic for retrieval
- Use Unix tar or HTAR when possible to optimize small file storage and retrieval
- Recommend file sizes in the 10s 100s of GB

Globus Issues

Retry Logic

- Globus retries failed transfers until they succeed
- Transfers that fail for non-transient issues (e.g. permissions, quota) show up as repeated HPSS errors
 - Can lead to administrative action

Recursive directory syncs

Can store a lot of small files—Use tar or HTAR

Interrupted writes to HPSS

Resume not possible with current interface—interrupted transfers start over from the beginning

High-latency/unreliable networks

 HPSS very sensitive to transfer failures. Store to NGF first if using unreliable connection

Recursive Operations

- Each HPSS system is backed by a single metadata server
 - Metadata is stored in a single SQL database instance
 - Every user interaction causes database activity
- Metadata-intensive operations incur delays
 - Recursive operations such as "chown –R ./*" may take longer than expected
 - Directories containing more than a few thousand files may become difficult to work with interactively

```
-bash-3.2$ time hsi -q 'ls -l /home/n/nickb/tmp/testing/80k-files/' > /dev/null 2>&1
```

```
real 4m16.559s
user 0m7.156s
sys 0m7.548s
```


Metadata-intensive Operations

hsi "Is –I" exponential delay:

Long-running Transfers

- Failure prone for a variety of reasons
 - Transient network issues, planned/unplanned maintenance, etc.
- Many clients do not have capability to resume interrupted transfers (gridFTP, Globus)
- Can affect archive internal data management (migration) performance
- Recommend keeping transfers to 24hrs or less if possible
 - Contact NERSC Consulting for help planning long-running transfers

Session Limits

- 15 concurrent sessions/user enforced
- Can be administratively reduced if a user is negatively affecting system usability for others

Questions, Problems, Further Reading

Asking Questions, Reporting Problems

Contact NERSC Consulting

- Toll-free 800-666-3772
- **–** 510-486-8611, #3
- Email <u>consult@nersc.gov</u>.

Further Reading

- Hands-on examples at end of this talk
- NERSC Website
 - <u>http://www.nersc.gov/users/data-and-networking/hpss/</u>
- HSI and HTAR man pages are installed on NERSC compute platforms
- Gleicher Enterprises Online Documentation (HSI, HTAR)
 - <u>http://www.mgleicher.us/index.html/hsi/</u>
 - <u>http://www.mgleicher.us/index.html/htar/</u>
- "HSI Best Practices for NERSC Users," LBNL Report #LBNL-4745E
 - <u>http://www.nersc.gov/assets/pubs_presos/HSIBestPractices-</u> Balthaser-Hazen-2011-06-09.pdf

Hands-on Examples

Logging into archive: Hands-on

- Using ssh, log into any NERSC compute platform
 - -bash-3.2\$ **ssh** dtn01.nersc.gov
- Start HPSS storage client "hsi"
 - -bash-3.2\$ **hsi**
- Enter NERSC password at prompt (first time only)

```
Generating .netrc entry... nickb@auth2.nersc.gov's password:
```

You should now be logged into your archive home directory

```
Username: nickb UID: 33065 Acct: 33065(33065) Copies: 1 Firewall: off [hsi.3.4.5 Wed Jul 6 16:14:55 PDT 2011][V3.4.5_2010_01_27.01] A:/home/n/nickb-> quit
```

Subsequent logins are now automated

Using HSI: Hands-on

- Using ssh, log into any NERSC compute platform
 -bash-3.2\$ ssh dtn01.nersc.gov
- Create a file in your home directory
 -bash-3.2\$ echo foo > abc.txt
- Start HPSS storage client "hsi"
 - -bash-3.2\$ **hsi**
- Store file in archive
 A:/home/n/nickb-> put abc.txt
- Retrieve file and rename
 A:/home/n/nickb-> get abc_1.txt : abc.txt
 A:/home/n/nickb-> quit
- Compare files*

-bash-3.2\$ **sha1sum abc.txt abc_1.txt** f1d2d2f924e986ac86fdf7b36c94bcdf32beec15 abc.txt f1d2d2f924e986ac86fdf7b36c94bcdf32beec15 abc_1.txt

^{*} Note: checksums now supported in HPSS with: 'hsi 'put -c on local_file : remote_file'

Using HTAR: Hands-on

- Using ssh, log into any NERSC compute platform
 -bash-3.2\$ ssh dtn01.nersc.gov
- Create a subdirectory in your home directory
 -bash-3.2\$ mkdir mydir
- Create a few files in the subdirectory

```
-bash-3.2$ echo foo > ./mydir/a.txt
-bash-3.2$ echo bar > ./mydir/b.txt
```

- Store subdirectory in archive as "mydir.tar" with HTAR
 -bash-3.2\$ htar -cvf mydir.tar ./mydir
- List newly created aggregate in archive -bash-3.2\$ htar -tvf mydir.tar
- Remove local directory and contents -bash-3.2\$ rm -rf ./mydir
- Extract directory and files from archive
 -bash-3.2\$ htar -xvf mydir.tar

Thank you.

