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Abstract - Edison, a Cray XC30 machine, is the NERSC's 
newest peta-scale supercomputer. Along with the Aries 
interconnect, Hyper-Threading (HT) is one of the new 
features available on the system. HT provides simultaneous 
multithreading capability on each core with two hardware 
threads available. In this paper, we analyze the potential 
benefits of HT for the NERSC workload by investigating the 
performance implications of HT on a few selected 
applications among the top 15 codes at NERSC, which 
represent more than 60% of the workload. By relating the 
observed HT results with more detailed profiling data we 
discuss if it is possible to predict how and when the users 
should utilize HT in their computations on Edison. 

Keywords-Hyper-Threading, HPC workload, application 
performance 

I. INTRODUCTION 
 

Edison, a Cray XC30, is NERSC’s next petascale 
machine [1]. One of the new features available on the 
machine is Hyper-Threading (HT), Intel’s simultaneous 
multi-threading technology. HT makes a physical core 
appear as two logical cores. These two logical cores have 
their own architectural states, but share most of the 
execution resources on the physical core. Two independent 
processes/threads can run simultaneously on the two 
logical cores, and when one of them stalls due to cache 
misses, branch mis-predictions, data dependencies, and/or 
waiting for other resources, the other process/thread can 
run on the execution resources which would otherwise be 
idle, increasing the resource utilization and improving the 
performance of the processors. HT has shown big potential 
in the processor design, because it has introduced a new 
direction and a complementary approach, Thread Level 
Parallel (TLP), to the traditional technique, Instruction 
Level Parallelization (ILP), used to improve the processor 
speed. The ILP approach improves processor speed by 
increasing the number of execution resources so that more 
instructions can be executed per clock cycle. Therefore, 
ILP increases the number of transistors and power 
consumption on the processor, and leads to a more 
complex and expensive processor design. HT, on the other 
hand, has the same goal of improving the processor speed 
but by increasing the resource utilization by making use of 
otherwise wasted cycles with only a small increase on the 
die size and power cost. HT was first introduced on the 
Intel® Xeon® processor MP in 2002, and with only 5% 

more die area, Intel observed a 30% performance gain due 
to HT with common server application benchmarks [2]. In 
an Intel follow-on analysis with compute-intensive 
workloads, significant performance gains, up to 30%, were 
also observed with threaded applications from a wide 
range of scientific fields [3]. 

Intel’s measured performance of HT was limited to the 
threaded applications in the past. Given the big potential of 
HT, it is of great interest to see if HT improves the 
performance of MPI/MPI+OpenMP codes, which are a 
large portion of the HPC workload. As the two 
processes/threads share the physical resources, the speedup 
from HT will not necessarily be as great as running on two 
physical cores. On the one hand, HT could benefit 
application performance by increasing the processor 
resource utilization. On the other hand, it may also 
introduce various overheads. Since the two 
processes/threads share the caches, the cache sizes 
available for each process/thread will be only one-half of 
the cache sizes on the physical core. Therefore HT may 
cause more cache misses compared to the single stream 
execution on the same physical core. In addition, HT runs 
twice as many processes/threads on the node; therefore, 
the memory available per process/thread will be only one-
half of the memory available on the physical core, 
potentially creating additional memory contention. In 
addition, as we will discuss later in the paper, a proper way 
to measure the HT performance gain is to compare the 
performance with and without HT at the same node 
counts. Therefore applications with HT run using twice as 
many MPI tasks/threads compared to single stream runs. 
This may introduce additional communication overhead. 
Therefore, whether HT benefits an application 
performance or not depends on whether the higher 
resource utilization that HT enables overcomes the 
overheads introduced from using HT. A good parallel 
scaling is necessarily for HT to realize any performance 
benefits. There have been a few previous studies regarding 
the performance impact of HT on HPC workloads [4,5]. 
The amount of gain observed from various kernel codes 
and MPI benchmark codes varied widely. Up to 15% 
performance gain was observed with some of the compute-
intensive codes, while some slow down was observed with 
other codes. These studies have pointed out that HT 
benefits some applications while hinders other applications 
depending on the application characteristics and the 
processor configurations. Some attempts were made to 



predict what characteristics of applications could serve as 
the indicators for HT performance.  Ref. [3] used the 
cycles per instruction and the cycles per micro operation as 
the indicators for HT opportunity. However, it has been 
difficult to come up with a set of common indicators for a 
wide range of codes to predict if an application could 
benefit from HT, especially for real applications that are 
far more complicated than the kernel codes that are 
specially designed to illustrate certain aspects of 
computations. 

HT is enabled on Edison by default. From the user’s 
perspective, HT presents a “free” extra resource available 
that may improve scientific productivity by reducing time 
to solution and/or increasing the throughput. Since the 
benefit of using HT is highly application dependent, it is 
interesting to examine what major applications at NERSC 
could benefit from HT. Since NERSC supports a diverse 
workload and hundreds of different application codes run 
on Edison, it is also important to provide general HT 
performance guidance to users. Therefore we will attempt 
to find some connection between profiling data and the 
observed HT performance.  

 The rest of this paper is organized as follows. We will 
describe the environment where our HT tests were 
conducted in Section II. In Section III, we will present our 
results with five selected applications among top 15 
application codes in the NERSC workload, and we will 
analyze and discuss the measured profiling data. We 
conclude the paper by summarizing our observations in 
section IV. 

 

II. EXPERIMENT ENVIRONMENT SETUP 

A. Edison 
Edison, a Cray XC30, is NERSC’s next petascale 

machine. It is scheduled to deliver in two phases. The 
Phase I system was delivered to NERSC in November 
2012 and has been in production for a few months. The 
Edison Phase I system is composed of 664 dual-socket 
nodes each with 64GB of DDR3 memory running at 1600 
MHz. All sockets are populated with 8-core Sandy Bridge 
processors running at a frequency of 2.6GHz.  Edison 
compute nodes are interconnected with Cray’s Aries high-
speed network with Dragon Fly topology.  The Phase II 
system is scheduled to arrive in June 2013. It will be 
populated with Ivy Bridge processors and will have more 
than 100K cores. The sustained system performance [6] 
will be 236 TFlops. The HT performance tests presented in 
this paper were conducted on Edison Phase I system, 
where HT is made available through the Intel Sandy 
Bridge Processors. 

B. NERSC Workloads and Application Code Selections 
NERSC serves a broad range of science disciplines 

from the DOE office of science, supporting more than 
4500 users across about 650 projects. As shown in Fig. 1, 
the most computing cycles were consumed on Fusion 
Energy (19%), Materials Science (19%), Lattice QCD 

(13%), Chemistry (12%), and Climate (11%) research. 
Fig. 2 shows the top applications codes according to the 
computing hours used (Jan-Nov of 2012) on Hopper [7], a 
Cray XE6 machine and the NERSC’s main workhorse. 
Among the top 15 codes, which represent more than 60% 
of the NERSC workload, we selected five application 
codes and listed them in Table I. We selected these 
applications based on the ranking and the scientific fields 
of the codes. We also tried to cover a variety of 
programming models. In addition, we use the NERSC-6 
benchmark suite [8] to measure Edison’s system 
performance. Among the seven application codes in the 
NERSC-6 benchmark suite, Cray used HT with four of 
them to meet the performance requirement in the contract 
for Edison, which covers the Climate, Fusion Energy, 
Chemistry, and Plasma sciences (see Table II). We 
selected one code among these four fields, GTC [9], a 
fusion plasma code, to further investigate the HT effect. 
We chose VASP [10], which is the #2 code at NERSC, to 

 

 
 

Figure 1. NERSC 2012 allocation breakdown 
 
 

 
 

Figure 2.  Top application codes on Hopper, Cray XE6 machine by 
hours used.  

 



represent the materials science workload. We included 
another materials science code, Quantum Espresso [11] 
(#9 code) in the tests, because it contains a non-trivial 
OpenMP implementation in addition to MPI, which is 
suitable to test the effect of HT on hybrid codes. We chose 
NAMD [12], a molecular dynamics code, which is widely 
used by the chemistry and bioscience users (similar to the 
#6 code, LAMMPS [13], see Fig. 2). NAMD uses 
Charm++ [14] built on top of MPI as its communication 
library. We chose NWChem [15], a commonly used 
chemistry code, which uses Global Arrays (GA) [16], to 
test the HT effect with the GA programming model.    

C. Codes and Test Cases 
1) VASP 5.3.3 

VASP [10] is a density functional theory (DFT) 
program that computes approximate solutions to the 
coupled electron Kohn-Sham equations for many-body 
systems. The code is written in Fortran 90 and MPI. Plane 
waves basis sets are used to express electron 
wavefunctions, charge densities, and local potentials. 

Pseudopotentials are used to describe the interactions 
between electrons and ions. The electronic ground state is 
calculated using the iterative diagonalization algorithms. 

We used VASP version 5.3.3 in our tests, and used a 
test case provided by a NERSC user, which contains 154 
atoms (Zn48O48C22S2H34) in the system. The code was 
built with the Intel compilers and used the MKL for 
ScaLapack, BLAS and FFTW3 routines. We tested the 
most commonly used iteration scheme, RMM-DIIS, ran 
the code over a range of node counts (strong scaling), and 
reported the total runtime to complete the first four 
electronic steps.  

2) NAMD CVS version 2013-03-28 
NAMD [12] is a C++ application that performs 

molecular dynamic simulations that compute atomic 
trajectories by solving equations of motion numerically 
using empirical force fields. The Particle Mesh Ewald 
algorithm provides a complete treatment of electrostatic 
and Van der Waals interactions. NAMD was built with 
the Intel compiler, used the single-precision FFTW2 
libraries, and used Charm++ as its communication library. 
We used the NAMD CVS version 2013-03-28, and tested 
with the standard STMV (virus) benchmark (containing 
1,066,628 atoms, periodic, PME).  We ran the tests over a 
range of node counts (strong scaling), and measured the 
time to complete the first 500 MD steps. 

3) Quantum ESPRESSO 5.2.0 
Quantum Espresso [11] (opEn-Source Package for 

Research in Electronic Structure, Simulation and 
Optimization) is a materials science program that 
performs electronic structure calculations and materials 
modeling at the nanoscale level. Quantum Espresso (QE) 
is one of the most commonly used DFT codes. It uses a 
plane wave (PW) basis set and pseudopotentials. The 
code is written in Fortran 90 and parallelized with MPI 
and OpenMP.  

We used the QE 5.2.0. The code was compiled with 
the Intel compilers and used the Intel MKL for ScaLapack 
and BLAS routines, and used the internal FFTW libraries 
distributed with QE. In the QE benchmark, we tested a 
self-consistent field (SCF) calculation with a commonly 
used iteration scheme, Blocked Davidson diagonalization 
algorithm, with a standard benchmark ausurf112 
(containing 112 Au atoms, slightly modified to reduce the 
amount of IO). We ran the code over a range of node 
counts (strong scaling), and at each node count ran with 
different combinations of MPI tasks/threads, and reported 
the total runtime to complete the first two electronic steps.   

4) NWChem 6.1 
NWChem [15] is a chemistry application that is 

designed to be scalable on high performance, parallel 
computing systems. It is written in Fortran and C, and its 
parallelization is mainly implemented with Global Arrays. 
We used the NWChem version 6.1, and tested with the 
cytosine_ccsd.nw test case from the NWChem 
distribution, which performs a coupled cluster calculation. 

TABLE I. SELECTED APPLICATION CODES 

Codes Descriptions Programming 
languages and 

models 

Libraries 
used 

 

Rank 

VASP DFT Fortran, C 
MPI 

 

MPI, 
MKL, 

FFTW3 

2 

NAMD MD C++ 
Charm++ 

(MPI) 

Charm++, 
FFTW2 

7 

QE DFT Fortran, C; 
MPI, OpenMP 

 

MPI, 
MKL, 

FFTW3  

9 

NWChem Chemistry Fortran, C 
GA, MPI, 
ARMCI 

MKL,  
GA 

13 

GTC Fusion 
plasma code 

(PIC) 

MPI, OpenMP 
 

MPI 
 

15 

 
 

TABLE II. NERSC-6 APPLICATION BENCHMARKS 

Applications Descriptions MPI 
Concurrencies 

HT 
usage 

 CAM Climate  240 Yes 

GAMESS Chemistry 1024 Yes 

GTC Fusion Plasma 2048 Yes 

IMPACT-T Accelerator Science 1024 Yes 

MAESTRO Astrophysics 2048 No 

MILC 
Quantum 

Chromodynamics 8192 No 

PARATEC Materials Science 1024 No 
 



The code was compiled with the Intel compilers and used 
BLAS routines from the Intel MKL. We ran the code over 
a range of node counts (strong scaling), and reported the 
total runtime.  

5) 3D Gyrokinetic Toroidal Code 
GTC [9] is a 3-dimensional code used to study 

microturbulence in magnetically confined toroidal fusion 
plasmas via the Particle-In-Cell (PIC) method. It is 
written in Fortran 90, and parallelized with MPI and 
OpenMP. It is one of the NERSC-6 application 
benchmark codes, which has been used to measure the 
sustained system performance [14] for Edison. The code 
was compiled with the Intel compilers and was built 
without enabling OpenMP directives (in order to be 
consistent with the standard benchmark runs).   

We used the large test case from NERSC-6 
benchmark suite, slightly modified to run a fewer 
iterations in our tests. We ran the code over a range of 
node counts (strong scaling) and reported the total 
runtime.  

D. Methods 
On Edison, HT is enabled in the BIOS by default. 

Therefore, we were not able to do any tests with HT 
turned off in the BIOS. In this paper, when we say 
running jobs with HT, it means running two processes or 
threads per physical core (dual stream); and by running 
jobs without HT, it means to run one process or thread per 
physical core (single stream), which appears as running 
on the half-packed nodes. It is a runtime option for users 
to run applications with or without HT. We ran each 
application with and without HT at the same node counts, 
and compared the run time. This means jobs using HT use 
two times as many MPI tasks or threads compared to jobs 
running without HT. In the previous work mentioned 
above, Intel VTune [17] was used to profile the 
applications, which can report accurate and detailed 
hardware activities on the Intel processors. However, on 
the Cray XC30, Intel VTune is not supported [18]. To 
obtain profiling data, we instrumented the application 
codes with the IPM [19] profiling tool, which can 
measure the memory usage, the MPI overhead (and 
detailed MPI profiling), floating point operations and 
other hardware events available through PAPI [20]. It is 
worth pointing out that on Sandy Bridge with HT turned 
on, the floating-point operations could not be measured 
accurately with PAPI due to the insufficient hardware 
performance counters available [21]. Therefore we did not 
use them in our analysis. We measured the total 
instructions completed (PAPI_TOT_INS), and the total 
cycles (PAPI_TOT_CYC).  Then we derived the cycles 
per instruction completed for a physical core by 
(PAPI_TOT_CYC/PAPI_TOT_INS) x (number of logical 
cores used per physical core). The cycles/instruction 
metric can be an indicator of whether there are many 
interruptions (or stalls) during a program execution. 

Therefore it could serve as an indicator for the HT 
opportunity as suggested in Ref [3]. Although it is 
difficult to quantitatively measure all the interruptions 
occurring during a program execution, especially due to 
data dependencies, we still tried to measure some of the 
interruptions that are measurable through the PAPI 
hardware events available on Sandy Bridge. We also 
measured L3 cache misses (PAPI_L3_TCM), TLB data 
misses (PAI_TLB_DM), and conditional branch 
instructions mis-predicted (PAPI_BR_MSP), which could 
represent the longer stalls during a program execution. 
Since only four programmable hardware performance 
counters are available on Sandy Bridge, we had to run the 
IPM-instrumented application codes multiple times, each 
time collecting three different hardware events.  

 

III. RESULTS AND DISCUSSION 
Fig. 3 shows the VASP results, where Fig. 3 (a) 

shows the run time with HT (dual stream) and without HT 
(single stream) over a range of node counts (strong 
scaling). Note at each node count, the job with HT ran 
with two times as many MPI tasks compared to the job 
without HT. As shown in Fig. 3 (a), HT slows down the 
VASP code for all node counts instead of improving the 
performance. The slowdown is about 8% running on a 
single node, gets larger in percentage when running with a 
larger number of nodes, and is about 50% when running 
with eight nodes. Fig. 3 (b) shows the percentage time 
spent in MPI communication. We can see that due to 
running with twice as many MPI tasks with HT, the 
communication overhead for the HT runs is higher 
compared to the runs without HT at each node count. 
However, the communication overhead increases by a 
smaller amount when doubling MPI tasks from the single 
to the double stream executions at each node count 
compared to that of doubling MPI tasks by doubling node 
counts. Fig. 3 (b) shows the code spent about 6-28% of 
the total runtime on communication, which is an 
acceptable communication overhead for the VASP code. 
Fig. 3 (a) and (b) suggest that HT does not benefit VASP 
and will not likely benefit at any node counts where the 
code scales.  

Figures 4-6 show the analogous results for NAMD, 
NWChem and GTC in the same format as in Fig. 3. One 
can see that HT benefits these codes at the smaller node 
counts, and the performance gain is 6-13%. However, the 
HT benefit decreases when running with a larger number 
of nodes, and eventually HT hurts the performance. For 
example, NAMD runs about 13% faster with HT if 
running with one or two nodes, but slows down more than 
40% if running with 16 nodes. The communication 
overhead (Fig. 4 (b)) and the parallel scaling (Fig. 4 (a)) 
suggest that it is preferable to run this job with eight 
nodes to effectively shorten the time to solution. 
Unfortunately, HT starts to hurt the performance near this 



node count. We see a similar situation with the NWChem 
code. The only difference is that HT has less of an effect 
on this code, as the maximum performance gain is around 
6% at the single node run. Again we see that HT benefits 
the runs at small node counts, but slows down the code 
near the sweet spot of the parallel scaling (near node 
count 16 or larger). Similarly, the GTC code runs around 
12% faster with HT if running with 32 nodes, but the HT 
performance benefit decreases with the increase of the 
node counts. At around 256 node counts, HT starts to 
slow down the codes (Fig. 6 (a)). Fig. 6 (b) shows that 
this code has a relatively low communication overhead at 
relatively larger number of nodes. The sweet spot is near 
the node count 256 or larger, which is outside the HT 
benefit region (near 32 and 64 nodes). If time to solution 
is the only concern to users, then HT probably is not very 
useful to users. However, if users are limited by the 
allocation hours and have to run with a smaller number of 
nodes, then HT is helpful to them (NERSC charges the 
machine hours per physical core). Instead of running at 
the parallel sweet spot (256 nodes), if running with 64 
nodes, HT allows the code to run 10% faster with 10% 
less charge compared to the run with 64 nodes without 
HT.  

Fig. 7 shows the runtime of QE with different 
combinations of MPI tasks and OpenMP threads. For an 
MPI+OpenMP hybrid code, it is desirable to run two 
threads per physical core with HT, because the two 
threads on the same physical core may share the cache 
contents. Fig. 7 (a) is the result of running two threads per 
physical core with HT, but running one thread per 
physical core without HT. Fig. 7 (a) shows that there is no 
observable performance benefit from using HT. Fig. 7 (c) 
shows a performance gain of up to 15% from HT at two 
nodes (eight and four threads per MPI task with and 
without HT, respectively). However, since the runtime at 
this MPI task and thread combination is much longer than 
running two threads per physical core with HT (a), the HT 
performance gain at this MPI task and OpenMP thread 
combination is probably not relevant to users in practice.  

To understand the observed HT effect on these 
applications, we have attempted to correlate the profiling 
data with the observed HT performance. Figures 3-6 (d), 
(e) and (f) show the cycles used per instruction, the L3 
cache misses, and the branch mis-predictions per physical 
core with and without HT for VASP, NAMD, NWChem 
and GTC, respectively. We were not able to collect the 
similar data for QE because the IPM available on Edison 
does not work with the MPI+OpenMP codes. It should be 
noted that we present these values per physical core 
instead of per logical core when HT is used to compare 
with the results without HT. The values per physical core 
with HT were obtained by adding the values on the two 
logical cores. As pointed out in Ref. [3] the 
cycles/instruction metric is an indicator for HT 
opportunity. If a code spends more cycles retiring a single 

instruction, it indicates more stalls have occurred during 
the program execution. From Figures 3-6 (d) we can see 
that with HT all codes have shown a reduced number of 
cycles/instruction per physical core, which should be an 
indication of higher resource utilization from using HT. 
Meanwhile, we also see that HT introduces extra 
overheads to program execution. Figures 3-6 (e) show 
that HT increases the L3 cache misses for a physical core. 
This is expected because the two processes on the same 
physical core share the caches (each of them may use only 
one-half of the caches). In addition, Figures 3-6 (f) show 
that each physical core has to deal with more branch mis-
predictions (NWChem is an exception, probably this is 
related to the GA programming model). This is also not 
surprising because now the branch mis-predictions on the 
two logical cores add up for the physical core. Moreover, 
the extra communication overhead introduced by running 
two times as many MPI tasks with HT imposes an 
additional data dependency across all or many physical 
cores, which may stop HT from utilizing the idling cycles. 
Figures 3-6 (d) show that VASP has the highest 
cycles/instruction among the four codes, which indicates a 
better chance for HT to improve the code performance; 
however, we did not observe any performance benefit 
from HT with VASP. We noticed VASP spends the MPI 
time almost entirely on MPI_Alltoallv, MPI_Allreduce, 
MPI_Alltoall, MPI_Bcast, and MPI_Barrier, which may 
result in some data dependencies across all or many 
physical cores. This may partially account for the VASP 
slowdown due to HT. As shown in Figures 3-6 (a) and 
(d), HT benefit occurred only at the smaller node counts, 
and a relatively low communication overhead is 
necessarily for HT to improve the performance. HT 
should have a better chance to benefit embarrassingly 
parallel codes for which no or low communication 
overhead is present. It is worth mentioning again that the 
communication overhead increase due to doubling MPI 
tasks from the single to the double stream execution 
(keeping the number of nodes unchanged) is smaller than 
that of doubling MPI tasks by doubling node counts with 
all four codes, which is favorable for HT. As we have 
listed above, while HT increases the resource utilizations, 
it introduces extra communication overhead, more cache 
misses, branch mis-predictions, and other interruptions 
that are not listed here.   

Although we have identified some competing 
elements that contribute to HT effect, it is difficult to 
quantitatively predict the HT performance with the 
profiling data. The contribution from each competing 
element depends on the application characteristics and the 
concurrencies at which the applications are run. As an 
attempt to learn the characteristics of the applications, in 
Figures 3-6 (c) we show the instructions completed per 
physical core with and without HT for the codes we 
examined. This metric represents the workload for a 
physical core at each node count. Assume for the runs 



without HT, the instructions completed per physical core 
is P + S, where P and S denote the parallel and the 
sequential portions of the workload, respectively. Since 
the metric on the physical core with HT is the sum of that 
on the two logical cores, the instructions completed per 
physical core with HT can be estimated roughly by (P/2 + 
S) + (P/2 +S) = P + 2S. This means that if a code contains 
a large sequential portion, then the instructions completed 
per physical core with HT would be much larger than that 
without HT. From Figures 3-6 (c) we can see that when 
this metric is similar with and without HT (meaning the 
applications are highly parallelized), the applications have 
a better chance to get performance benefit from HT.  

To summarize, for HT to realize any performance 
benefit for applications, it seems the following conditions 
have to be met.  

 
• The cycles/instruction value should be sufficiently 

large so that HT has enough work to do to help, 
although HT may not address all the interruptions.  

• The communication overhead needs to be 
sufficiently small.  In particular, the extra 
communication overhead from doubling MPI 
tasks should be small so that the amount of the 
interruptions that HT cannot address do not 
dominate the HT effect. This indicates that HT 
benefits are likely to happen at relatively smaller 
node counts in the parallel scaling region of 
applications except for embarrassingly parallel 
codes. 

• The number of instructions completed per physical 
core with and without HT need to be similar, 
which requires highly efficient parallel codes. 
  

On Edison, these numbers can be measured using the 
easy-to-use IPM tool (with the PAPI_TOT_INS hardware 
event), so it will be helpful if users look into these 
numbers to see if their application is a candidate for HT 
performance benefits. The overall HT performance should 
be the competing result between the higher resource 
utilization that HT enables and the overheads that HT 
introduces to the program execution.  

 

IV. CONCLUSIONS 
 

We investigated the HT performance impact on five 
applications selected to represent a portion of the NERSC 
workload. We consider a proper measure of the HT 
performance effect to be comparing performance with and 
without HT on the same number of nodes, meaning 
applications run with two times as many MPI tasks when 
HT is used. We compared the runtime with and without 
HT for the five selected applications over a range of node 
counts (strong scaling). We observed that HT slows down 
VASP and QE, but improves the performance of NAMD, 
NWChem and GTC by 6-13% when running with a 
smaller number of nodes, where the communication 

overhead is relatively small. However, the HT 
performance gain for these codes decreases and a big 
performance penalty occurs when running with a larger 
number of nodes, where the sweet spot of the parallel 
scaling of the codes usually resides. For NAMD, 
NWChem, GTC codes, the parallel scaling sweet spots do 
not overlap with the HT benefit region; therefore, the HT 
performance gain occurring with the smaller node counts 
probably has a limited use to users in practice when the 
time to solution is the main concern to users. However, if 
users are limited by the allocation hours, then HT may be 
helpful to them. It should be noted that the HT benefit is 
not only application dependent, but also concurrency 
dependent, i.e., at which node counts an application is run. 
Therefore blindly using HT may result in a large 
performance penalty, and users should use HT with 
caution. 

We also attempted to relate the observed HT 
performance to profiling data such as cycles/instructions, 
L3 cache misses, branch mis-predictions, and the 
communication overhead. We were able to confirm that 
with HT the cycles/instruction per physical core are 
reduced for all codes, indicating higher resource 
utilizations. Meanwhile, HT increases L3 cache misses, 
branch mis-predictions, and other stalls during the 
program execution, which contribute negatively to the 
code performance. In addition, the extra communication 
overhead due to running two times as many MPI tasks 
with HT contributes negatively to the code performance as 
well. The overall HT performance should be the 
competing result between the higher resource utilizations 
that HT enables and the various overheads that HT 
introduces to the program execution. Our analysis shows 
that the applications with higher cycles/instruction could 
be candidates for HT benefits, although this metric alone is 
not sufficient to predict the HT effect because HT is not 
able to address all the interruptions occurring in a program 
execution. In addition, for HT to realize any performance 
benefit, low communication overhead and high parallel 
efficiency are necessary; therefore, the HT benefits are 
likely to occur at relatively lower nodes counts in the 
parallel scaling region of applications unless the 
applications are embarrassingly parallel codes.  

HT, as a complementary approach (thread level 
parallel) to the existing modern technique (instruction 
level parallel) to improve processor speed, has a big 
potential in processor design. We observed that the HT 
benefit is not only application dependent, but also 
concurrency dependent, occurring at the smaller node 
counts. Since the gap between the HT benefit region and 
the parallel sweet spot is relatively large for the major 
codes we examined in the NERSC workload, and also 
some of the codes do not get any performance benefit 
from HT, the HT performance benefit to the NERSC 
workload is probably limited on Edison at this point. 
However, with the continuous improvement on the HT 
implementation, we may expect to see more role of HT in 
HPC workloads in the future. 
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Figure 3.  The VASP results, where (a) shows the run time using HT (dual stream) and without using HT (single stream) at a range of node counts with a 
test case containing 105 atoms. Figure (b) shows the percentage time spent on communication, and Figure (c) shows the instructions completed per 

physical core with and without using HT, and Figure (d) shows the cycles used per instructions completed per physical core with and without using HT, 
and the panel (e) shows the L3 cache misses per physical core with and without using HT, and the panel (f) shows the branch mis-predictions per physical 

core with and without using HT. At each node count, the run with HT used twice the number of MPI tasks. 
 



  

Figure 4. The NAMD results in the same format as in Fig. 3. The STMV standard benchmark case was used. 
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Figure 5. The NWChem results in the same format as in Fig. 3 with a standard benchmark case, cytosine_ccsd.nw. NWchem 
allows to indicate the memory request in input files. The runs with HT requested one-half of the memory (stack, heap and global 

memory) of that the runs without HT.  
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Figure 6. The GTC results in the same format as in Fig. 3 with a slightly modified NERSC-6 benchmark input.  
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