
Effects of Hyper-Threading on the NERSC workload on Edison
Zhengji Zhao, Nicholas J. Wright and Katie Antypas

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

Berkeley, CA

E-mail: {zzhao, njwright, kantypas}@lbl.gov

Abstract - Edison, a Cray XC30 machine, is the NERSC's
newest peta-scale supercomputer. Along with the Aries
interconnect, Hyper-Threading (HT) is one of the new
features available on the system. HT provides simultaneous
multithreading capability on each core with two hardware
threads available. In this paper, we analyze the potential
benefits of HT for the NERSC workload by investigating the
performance implications of HT on a few selected
applications among the top 15 codes at NERSC, which
represent more than 60% of the workload. By relating the
observed HT results with more detailed profiling data we
discuss if it is possible to predict how and when the users
should utilize HT in their computations on Edison.

Keywords-Hyper-Threading, HPC workload, application
performance

I. INTRODUCTION

Edison, a Cray XC30, is NERSC’s next petascale
machine [1]. One of the new features available on the
machine is Hyper-Threading (HT), Intel’s simultaneous
multi-threading technology. HT makes a physical core
appear as two logical cores. These two logical cores have
their own architectural states, but share most of the
execution resources on the physical core. Two independent
processes/threads can run simultaneously on the two
logical cores, and when one of them stalls due to cache
misses, branch mis-predictions, data dependencies, and/or
waiting for other resources, the other process/thread can
run on the execution resources which would otherwise be
idle, increasing the resource utilization and improving the
performance of the processors. HT has shown big potential
in the processor design, because it has introduced a new
direction and a complementary approach, Thread Level
Parallel (TLP), to the traditional technique, Instruction
Level Parallelization (ILP), used to improve the processor
speed. The ILP approach improves processor speed by
increasing the number of execution resources so that more
instructions can be executed per clock cycle. Therefore,
ILP increases the number of transistors and power
consumption on the processor, and leads to a more
complex and expensive processor design. HT, on the other
hand, has the same goal of improving the processor speed
but by increasing the resource utilization by making use of
otherwise wasted cycles with only a small increase on the
die size and power cost. HT was first introduced on the
Intel® Xeon® processor MP in 2002, and with only 5%

more die area, Intel observed a 30% performance gain due
to HT with common server application benchmarks [2]. In
an Intel follow-on analysis with compute-intensive
workloads, significant performance gains, up to 30%, were
also observed with threaded applications from a wide
range of scientific fields [3].

Intel’s measured performance of HT was limited to the
threaded applications in the past. Given the big potential of
HT, it is of great interest to see if HT improves the
performance of MPI/MPI+OpenMP codes, which are a
large portion of the HPC workload. As the two
processes/threads share the physical resources, the speedup
from HT will not necessarily be as great as running on two
physical cores. On the one hand, HT could benefit
application performance by increasing the processor
resource utilization. On the other hand, it may also
introduce various overheads. Since the two
processes/threads share the caches, the cache sizes
available for each process/thread will be only one-half of
the cache sizes on the physical core. Therefore HT may
cause more cache misses compared to the single stream
execution on the same physical core. In addition, HT runs
twice as many processes/threads on the node; therefore,
the memory available per process/thread will be only one-
half of the memory available on the physical core,
potentially creating additional memory contention. In
addition, as we will discuss later in the paper, a proper way
to measure the HT performance gain is to compare the
performance with and without HT at the same node
counts. Therefore applications with HT run using twice as
many MPI tasks/threads compared to single stream runs.
This may introduce additional communication overhead.
Therefore, whether HT benefits an application
performance or not depends on whether the higher
resource utilization that HT enables overcomes the
overheads introduced from using HT. A good parallel
scaling is necessarily for HT to realize any performance
benefits. There have been a few previous studies regarding
the performance impact of HT on HPC workloads [4,5].
The amount of gain observed from various kernel codes
and MPI benchmark codes varied widely. Up to 15%
performance gain was observed with some of the compute-
intensive codes, while some slow down was observed with
other codes. These studies have pointed out that HT
benefits some applications while hinders other applications
depending on the application characteristics and the
processor configurations. Some attempts were made to

predict what characteristics of applications could serve as
the indicators for HT performance. Ref. [3] used the
cycles per instruction and the cycles per micro operation as
the indicators for HT opportunity. However, it has been
difficult to come up with a set of common indicators for a
wide range of codes to predict if an application could
benefit from HT, especially for real applications that are
far more complicated than the kernel codes that are
specially designed to illustrate certain aspects of
computations.

HT is enabled on Edison by default. From the user’s
perspective, HT presents a “free” extra resource available
that may improve scientific productivity by reducing time
to solution and/or increasing the throughput. Since the
benefit of using HT is highly application dependent, it is
interesting to examine what major applications at NERSC
could benefit from HT. Since NERSC supports a diverse
workload and hundreds of different application codes run
on Edison, it is also important to provide general HT
performance guidance to users. Therefore we will attempt
to find some connection between profiling data and the
observed HT performance.

 The rest of this paper is organized as follows. We will
describe the environment where our HT tests were
conducted in Section II. In Section III, we will present our
results with five selected applications among top 15
application codes in the NERSC workload, and we will
analyze and discuss the measured profiling data. We
conclude the paper by summarizing our observations in
section IV.

II. EXPERIMENT ENVIRONMENT SETUP

A. Edison
Edison, a Cray XC30, is NERSC’s next petascale

machine. It is scheduled to deliver in two phases. The
Phase I system was delivered to NERSC in November
2012 and has been in production for a few months. The
Edison Phase I system is composed of 664 dual-socket
nodes each with 64GB of DDR3 memory running at 1600
MHz. All sockets are populated with 8-core Sandy Bridge
processors running at a frequency of 2.6GHz. Edison
compute nodes are interconnected with Cray’s Aries high-
speed network with Dragon Fly topology. The Phase II
system is scheduled to arrive in June 2013. It will be
populated with Ivy Bridge processors and will have more
than 100K cores. The sustained system performance [6]
will be 236 TFlops. The HT performance tests presented in
this paper were conducted on Edison Phase I system,
where HT is made available through the Intel Sandy
Bridge Processors.

B. NERSC Workloads and Application Code Selections
NERSC serves a broad range of science disciplines

from the DOE office of science, supporting more than
4500 users across about 650 projects. As shown in Fig. 1,
the most computing cycles were consumed on Fusion
Energy (19%), Materials Science (19%), Lattice QCD

(13%), Chemistry (12%), and Climate (11%) research.
Fig. 2 shows the top applications codes according to the
computing hours used (Jan-Nov of 2012) on Hopper [7], a
Cray XE6 machine and the NERSC’s main workhorse.
Among the top 15 codes, which represent more than 60%
of the NERSC workload, we selected five application
codes and listed them in Table I. We selected these
applications based on the ranking and the scientific fields
of the codes. We also tried to cover a variety of
programming models. In addition, we use the NERSC-6
benchmark suite [8] to measure Edison’s system
performance. Among the seven application codes in the
NERSC-6 benchmark suite, Cray used HT with four of
them to meet the performance requirement in the contract
for Edison, which covers the Climate, Fusion Energy,
Chemistry, and Plasma sciences (see Table II). We
selected one code among these four fields, GTC [9], a
fusion plasma code, to further investigate the HT effect.
We chose VASP [10], which is the #2 code at NERSC, to

Figure 1. NERSC 2012 allocation breakdown

Figure 2. Top application codes on Hopper, Cray XE6 machine by
hours used.

represent the materials science workload. We included
another materials science code, Quantum Espresso [11]
(#9 code) in the tests, because it contains a non-trivial
OpenMP implementation in addition to MPI, which is
suitable to test the effect of HT on hybrid codes. We chose
NAMD [12], a molecular dynamics code, which is widely
used by the chemistry and bioscience users (similar to the
#6 code, LAMMPS [13], see Fig. 2). NAMD uses
Charm++ [14] built on top of MPI as its communication
library. We chose NWChem [15], a commonly used
chemistry code, which uses Global Arrays (GA) [16], to
test the HT effect with the GA programming model.

C. Codes and Test Cases
1) VASP 5.3.3

VASP [10] is a density functional theory (DFT)
program that computes approximate solutions to the
coupled electron Kohn-Sham equations for many-body
systems. The code is written in Fortran 90 and MPI. Plane
waves basis sets are used to express electron
wavefunctions, charge densities, and local potentials.

Pseudopotentials are used to describe the interactions
between electrons and ions. The electronic ground state is
calculated using the iterative diagonalization algorithms.

We used VASP version 5.3.3 in our tests, and used a
test case provided by a NERSC user, which contains 154
atoms (Zn48O48C22S2H34) in the system. The code was
built with the Intel compilers and used the MKL for
ScaLapack, BLAS and FFTW3 routines. We tested the
most commonly used iteration scheme, RMM-DIIS, ran
the code over a range of node counts (strong scaling), and
reported the total runtime to complete the first four
electronic steps.

2) NAMD CVS version 2013-03-28
NAMD [12] is a C++ application that performs

molecular dynamic simulations that compute atomic
trajectories by solving equations of motion numerically
using empirical force fields. The Particle Mesh Ewald
algorithm provides a complete treatment of electrostatic
and Van der Waals interactions. NAMD was built with
the Intel compiler, used the single-precision FFTW2
libraries, and used Charm++ as its communication library.
We used the NAMD CVS version 2013-03-28, and tested
with the standard STMV (virus) benchmark (containing
1,066,628 atoms, periodic, PME). We ran the tests over a
range of node counts (strong scaling), and measured the
time to complete the first 500 MD steps.

3) Quantum ESPRESSO 5.2.0
Quantum Espresso [11] (opEn-Source Package for

Research in Electronic Structure, Simulation and
Optimization) is a materials science program that
performs electronic structure calculations and materials
modeling at the nanoscale level. Quantum Espresso (QE)
is one of the most commonly used DFT codes. It uses a
plane wave (PW) basis set and pseudopotentials. The
code is written in Fortran 90 and parallelized with MPI
and OpenMP.

We used the QE 5.2.0. The code was compiled with
the Intel compilers and used the Intel MKL for ScaLapack
and BLAS routines, and used the internal FFTW libraries
distributed with QE. In the QE benchmark, we tested a
self-consistent field (SCF) calculation with a commonly
used iteration scheme, Blocked Davidson diagonalization
algorithm, with a standard benchmark ausurf112
(containing 112 Au atoms, slightly modified to reduce the
amount of IO). We ran the code over a range of node
counts (strong scaling), and at each node count ran with
different combinations of MPI tasks/threads, and reported
the total runtime to complete the first two electronic steps.

4) NWChem 6.1
NWChem [15] is a chemistry application that is

designed to be scalable on high performance, parallel
computing systems. It is written in Fortran and C, and its
parallelization is mainly implemented with Global Arrays.
We used the NWChem version 6.1, and tested with the
cytosine_ccsd.nw test case from the NWChem
distribution, which performs a coupled cluster calculation.

TABLE I. SELECTED APPLICATION CODES

Codes Descriptions Programming
languages and

models

Libraries
used

Rank

VASP DFT Fortran, C
MPI

MPI,
MKL,

FFTW3

2

NAMD MD C++
Charm++

(MPI)

Charm++,
FFTW2

7

QE DFT Fortran, C;
MPI, OpenMP

MPI,
MKL,

FFTW3

9

NWChem Chemistry Fortran, C
GA, MPI,
ARMCI

MKL,
GA

13

GTC Fusion
plasma code

(PIC)

MPI, OpenMP

MPI

15

TABLE II. NERSC-6 APPLICATION BENCHMARKS

Applications Descriptions MPI
Concurrencies

HT
usage

 CAM Climate 240 Yes

GAMESS Chemistry 1024 Yes

GTC Fusion Plasma 2048 Yes

IMPACT-T Accelerator Science 1024 Yes

MAESTRO Astrophysics 2048 No

MILC
Quantum

Chromodynamics 8192 No

PARATEC Materials Science 1024 No

The code was compiled with the Intel compilers and used
BLAS routines from the Intel MKL. We ran the code over
a range of node counts (strong scaling), and reported the
total runtime.

5) 3D Gyrokinetic Toroidal Code
GTC [9] is a 3-dimensional code used to study

microturbulence in magnetically confined toroidal fusion
plasmas via the Particle-In-Cell (PIC) method. It is
written in Fortran 90, and parallelized with MPI and
OpenMP. It is one of the NERSC-6 application
benchmark codes, which has been used to measure the
sustained system performance [14] for Edison. The code
was compiled with the Intel compilers and was built
without enabling OpenMP directives (in order to be
consistent with the standard benchmark runs).

We used the large test case from NERSC-6
benchmark suite, slightly modified to run a fewer
iterations in our tests. We ran the code over a range of
node counts (strong scaling) and reported the total
runtime.

D. Methods
On Edison, HT is enabled in the BIOS by default.

Therefore, we were not able to do any tests with HT
turned off in the BIOS. In this paper, when we say
running jobs with HT, it means running two processes or
threads per physical core (dual stream); and by running
jobs without HT, it means to run one process or thread per
physical core (single stream), which appears as running
on the half-packed nodes. It is a runtime option for users
to run applications with or without HT. We ran each
application with and without HT at the same node counts,
and compared the run time. This means jobs using HT use
two times as many MPI tasks or threads compared to jobs
running without HT. In the previous work mentioned
above, Intel VTune [17] was used to profile the
applications, which can report accurate and detailed
hardware activities on the Intel processors. However, on
the Cray XC30, Intel VTune is not supported [18]. To
obtain profiling data, we instrumented the application
codes with the IPM [19] profiling tool, which can
measure the memory usage, the MPI overhead (and
detailed MPI profiling), floating point operations and
other hardware events available through PAPI [20]. It is
worth pointing out that on Sandy Bridge with HT turned
on, the floating-point operations could not be measured
accurately with PAPI due to the insufficient hardware
performance counters available [21]. Therefore we did not
use them in our analysis. We measured the total
instructions completed (PAPI_TOT_INS), and the total
cycles (PAPI_TOT_CYC). Then we derived the cycles
per instruction completed for a physical core by
(PAPI_TOT_CYC/PAPI_TOT_INS) x (number of logical
cores used per physical core). The cycles/instruction
metric can be an indicator of whether there are many
interruptions (or stalls) during a program execution.

Therefore it could serve as an indicator for the HT
opportunity as suggested in Ref [3]. Although it is
difficult to quantitatively measure all the interruptions
occurring during a program execution, especially due to
data dependencies, we still tried to measure some of the
interruptions that are measurable through the PAPI
hardware events available on Sandy Bridge. We also
measured L3 cache misses (PAPI_L3_TCM), TLB data
misses (PAI_TLB_DM), and conditional branch
instructions mis-predicted (PAPI_BR_MSP), which could
represent the longer stalls during a program execution.
Since only four programmable hardware performance
counters are available on Sandy Bridge, we had to run the
IPM-instrumented application codes multiple times, each
time collecting three different hardware events.

III. RESULTS AND DISCUSSION
Fig. 3 shows the VASP results, where Fig. 3 (a)

shows the run time with HT (dual stream) and without HT
(single stream) over a range of node counts (strong
scaling). Note at each node count, the job with HT ran
with two times as many MPI tasks compared to the job
without HT. As shown in Fig. 3 (a), HT slows down the
VASP code for all node counts instead of improving the
performance. The slowdown is about 8% running on a
single node, gets larger in percentage when running with a
larger number of nodes, and is about 50% when running
with eight nodes. Fig. 3 (b) shows the percentage time
spent in MPI communication. We can see that due to
running with twice as many MPI tasks with HT, the
communication overhead for the HT runs is higher
compared to the runs without HT at each node count.
However, the communication overhead increases by a
smaller amount when doubling MPI tasks from the single
to the double stream executions at each node count
compared to that of doubling MPI tasks by doubling node
counts. Fig. 3 (b) shows the code spent about 6-28% of
the total runtime on communication, which is an
acceptable communication overhead for the VASP code.
Fig. 3 (a) and (b) suggest that HT does not benefit VASP
and will not likely benefit at any node counts where the
code scales.

Figures 4-6 show the analogous results for NAMD,
NWChem and GTC in the same format as in Fig. 3. One
can see that HT benefits these codes at the smaller node
counts, and the performance gain is 6-13%. However, the
HT benefit decreases when running with a larger number
of nodes, and eventually HT hurts the performance. For
example, NAMD runs about 13% faster with HT if
running with one or two nodes, but slows down more than
40% if running with 16 nodes. The communication
overhead (Fig. 4 (b)) and the parallel scaling (Fig. 4 (a))
suggest that it is preferable to run this job with eight
nodes to effectively shorten the time to solution.
Unfortunately, HT starts to hurt the performance near this

node count. We see a similar situation with the NWChem
code. The only difference is that HT has less of an effect
on this code, as the maximum performance gain is around
6% at the single node run. Again we see that HT benefits
the runs at small node counts, but slows down the code
near the sweet spot of the parallel scaling (near node
count 16 or larger). Similarly, the GTC code runs around
12% faster with HT if running with 32 nodes, but the HT
performance benefit decreases with the increase of the
node counts. At around 256 node counts, HT starts to
slow down the codes (Fig. 6 (a)). Fig. 6 (b) shows that
this code has a relatively low communication overhead at
relatively larger number of nodes. The sweet spot is near
the node count 256 or larger, which is outside the HT
benefit region (near 32 and 64 nodes). If time to solution
is the only concern to users, then HT probably is not very
useful to users. However, if users are limited by the
allocation hours and have to run with a smaller number of
nodes, then HT is helpful to them (NERSC charges the
machine hours per physical core). Instead of running at
the parallel sweet spot (256 nodes), if running with 64
nodes, HT allows the code to run 10% faster with 10%
less charge compared to the run with 64 nodes without
HT.

Fig. 7 shows the runtime of QE with different
combinations of MPI tasks and OpenMP threads. For an
MPI+OpenMP hybrid code, it is desirable to run two
threads per physical core with HT, because the two
threads on the same physical core may share the cache
contents. Fig. 7 (a) is the result of running two threads per
physical core with HT, but running one thread per
physical core without HT. Fig. 7 (a) shows that there is no
observable performance benefit from using HT. Fig. 7 (c)
shows a performance gain of up to 15% from HT at two
nodes (eight and four threads per MPI task with and
without HT, respectively). However, since the runtime at
this MPI task and thread combination is much longer than
running two threads per physical core with HT (a), the HT
performance gain at this MPI task and OpenMP thread
combination is probably not relevant to users in practice.

To understand the observed HT effect on these
applications, we have attempted to correlate the profiling
data with the observed HT performance. Figures 3-6 (d),
(e) and (f) show the cycles used per instruction, the L3
cache misses, and the branch mis-predictions per physical
core with and without HT for VASP, NAMD, NWChem
and GTC, respectively. We were not able to collect the
similar data for QE because the IPM available on Edison
does not work with the MPI+OpenMP codes. It should be
noted that we present these values per physical core
instead of per logical core when HT is used to compare
with the results without HT. The values per physical core
with HT were obtained by adding the values on the two
logical cores. As pointed out in Ref. [3] the
cycles/instruction metric is an indicator for HT
opportunity. If a code spends more cycles retiring a single

instruction, it indicates more stalls have occurred during
the program execution. From Figures 3-6 (d) we can see
that with HT all codes have shown a reduced number of
cycles/instruction per physical core, which should be an
indication of higher resource utilization from using HT.
Meanwhile, we also see that HT introduces extra
overheads to program execution. Figures 3-6 (e) show
that HT increases the L3 cache misses for a physical core.
This is expected because the two processes on the same
physical core share the caches (each of them may use only
one-half of the caches). In addition, Figures 3-6 (f) show
that each physical core has to deal with more branch mis-
predictions (NWChem is an exception, probably this is
related to the GA programming model). This is also not
surprising because now the branch mis-predictions on the
two logical cores add up for the physical core. Moreover,
the extra communication overhead introduced by running
two times as many MPI tasks with HT imposes an
additional data dependency across all or many physical
cores, which may stop HT from utilizing the idling cycles.
Figures 3-6 (d) show that VASP has the highest
cycles/instruction among the four codes, which indicates a
better chance for HT to improve the code performance;
however, we did not observe any performance benefit
from HT with VASP. We noticed VASP spends the MPI
time almost entirely on MPI_Alltoallv, MPI_Allreduce,
MPI_Alltoall, MPI_Bcast, and MPI_Barrier, which may
result in some data dependencies across all or many
physical cores. This may partially account for the VASP
slowdown due to HT. As shown in Figures 3-6 (a) and
(d), HT benefit occurred only at the smaller node counts,
and a relatively low communication overhead is
necessarily for HT to improve the performance. HT
should have a better chance to benefit embarrassingly
parallel codes for which no or low communication
overhead is present. It is worth mentioning again that the
communication overhead increase due to doubling MPI
tasks from the single to the double stream execution
(keeping the number of nodes unchanged) is smaller than
that of doubling MPI tasks by doubling node counts with
all four codes, which is favorable for HT. As we have
listed above, while HT increases the resource utilizations,
it introduces extra communication overhead, more cache
misses, branch mis-predictions, and other interruptions
that are not listed here.

Although we have identified some competing
elements that contribute to HT effect, it is difficult to
quantitatively predict the HT performance with the
profiling data. The contribution from each competing
element depends on the application characteristics and the
concurrencies at which the applications are run. As an
attempt to learn the characteristics of the applications, in
Figures 3-6 (c) we show the instructions completed per
physical core with and without HT for the codes we
examined. This metric represents the workload for a
physical core at each node count. Assume for the runs

without HT, the instructions completed per physical core
is P + S, where P and S denote the parallel and the
sequential portions of the workload, respectively. Since
the metric on the physical core with HT is the sum of that
on the two logical cores, the instructions completed per
physical core with HT can be estimated roughly by (P/2 +
S) + (P/2 +S) = P + 2S. This means that if a code contains
a large sequential portion, then the instructions completed
per physical core with HT would be much larger than that
without HT. From Figures 3-6 (c) we can see that when
this metric is similar with and without HT (meaning the
applications are highly parallelized), the applications have
a better chance to get performance benefit from HT.

To summarize, for HT to realize any performance
benefit for applications, it seems the following conditions
have to be met.

• The cycles/instruction value should be sufficiently

large so that HT has enough work to do to help,
although HT may not address all the interruptions.

• The communication overhead needs to be
sufficiently small. In particular, the extra
communication overhead from doubling MPI
tasks should be small so that the amount of the
interruptions that HT cannot address do not
dominate the HT effect. This indicates that HT
benefits are likely to happen at relatively smaller
node counts in the parallel scaling region of
applications except for embarrassingly parallel
codes.

• The number of instructions completed per physical
core with and without HT need to be similar,
which requires highly efficient parallel codes.

On Edison, these numbers can be measured using the
easy-to-use IPM tool (with the PAPI_TOT_INS hardware
event), so it will be helpful if users look into these
numbers to see if their application is a candidate for HT
performance benefits. The overall HT performance should
be the competing result between the higher resource
utilization that HT enables and the overheads that HT
introduces to the program execution.

IV. CONCLUSIONS

We investigated the HT performance impact on five
applications selected to represent a portion of the NERSC
workload. We consider a proper measure of the HT
performance effect to be comparing performance with and
without HT on the same number of nodes, meaning
applications run with two times as many MPI tasks when
HT is used. We compared the runtime with and without
HT for the five selected applications over a range of node
counts (strong scaling). We observed that HT slows down
VASP and QE, but improves the performance of NAMD,
NWChem and GTC by 6-13% when running with a
smaller number of nodes, where the communication

overhead is relatively small. However, the HT
performance gain for these codes decreases and a big
performance penalty occurs when running with a larger
number of nodes, where the sweet spot of the parallel
scaling of the codes usually resides. For NAMD,
NWChem, GTC codes, the parallel scaling sweet spots do
not overlap with the HT benefit region; therefore, the HT
performance gain occurring with the smaller node counts
probably has a limited use to users in practice when the
time to solution is the main concern to users. However, if
users are limited by the allocation hours, then HT may be
helpful to them. It should be noted that the HT benefit is
not only application dependent, but also concurrency
dependent, i.e., at which node counts an application is run.
Therefore blindly using HT may result in a large
performance penalty, and users should use HT with
caution.

We also attempted to relate the observed HT
performance to profiling data such as cycles/instructions,
L3 cache misses, branch mis-predictions, and the
communication overhead. We were able to confirm that
with HT the cycles/instruction per physical core are
reduced for all codes, indicating higher resource
utilizations. Meanwhile, HT increases L3 cache misses,
branch mis-predictions, and other stalls during the
program execution, which contribute negatively to the
code performance. In addition, the extra communication
overhead due to running two times as many MPI tasks
with HT contributes negatively to the code performance as
well. The overall HT performance should be the
competing result between the higher resource utilizations
that HT enables and the various overheads that HT
introduces to the program execution. Our analysis shows
that the applications with higher cycles/instruction could
be candidates for HT benefits, although this metric alone is
not sufficient to predict the HT effect because HT is not
able to address all the interruptions occurring in a program
execution. In addition, for HT to realize any performance
benefit, low communication overhead and high parallel
efficiency are necessary; therefore, the HT benefits are
likely to occur at relatively lower nodes counts in the
parallel scaling region of applications unless the
applications are embarrassingly parallel codes.

HT, as a complementary approach (thread level
parallel) to the existing modern technique (instruction
level parallel) to improve processor speed, has a big
potential in processor design. We observed that the HT
benefit is not only application dependent, but also
concurrency dependent, occurring at the smaller node
counts. Since the gap between the HT benefit region and
the parallel sweet spot is relatively large for the major
codes we examined in the NERSC workload, and also
some of the codes do not get any performance benefit
from HT, the HT performance benefit to the NERSC
workload is probably limited on Edison at this point.
However, with the continuous improvement on the HT
implementation, we may expect to see more role of HT in
HPC workloads in the future.

VASP

(a)

(c)

(e)

(d)

(b)

(f)

Figure 3. The VASP results, where (a) shows the run time using HT (dual stream) and without using HT (single stream) at a range of node counts with a
test case containing 105 atoms. Figure (b) shows the percentage time spent on communication, and Figure (c) shows the instructions completed per

physical core with and without using HT, and Figure (d) shows the cycles used per instructions completed per physical core with and without using HT,
and the panel (e) shows the L3 cache misses per physical core with and without using HT, and the panel (f) shows the branch mis-predictions per physical

core with and without using HT. At each node count, the run with HT used twice the number of MPI tasks.

Figure 4. The NAMD results in the same format as in Fig. 3. The STMV standard benchmark case was used.

(a)

(b)

(c)

(d)

(f)

(e)

NAMD

(a) (d)

(f)
(c)

(b) (e)

Figure 5. The NWChem results in the same format as in Fig. 3 with a standard benchmark case, cytosine_ccsd.nw. NWchem
allows to indicate the memory request in input files. The runs with HT requested one-half of the memory (stack, heap and global

memory) of that the runs without HT.

NWChem

(a) (e)

(b) (f)

(c) (g)

Figure 6. The GTC results in the same format as in Fig. 3 with a slightly modified NERSC-6 benchmark input.

GTC

ACKNOWLEDGMENT
Authors would like to thank Larry Pezzaglia at NERSC

for his support and help with early HT study on the
Mendel clusters at NERSC. Authors would like to thank
Hongzhang Shan at Lawrence Berkeley National
Laboratory, Haihang You at the National Institute for
Computational Sciences, and Harvey Wasserman at
NERSC for the insightful discussions and help. Authors
would also like to thank Richard Gerber and other
members in the User Services Group at NERSC for the
useful discussions. This work was supported by the ASCR
Office in the DOE, Office of Science, under contract
number DE-AC02-05CH11231. It used the resources of
National Energy Research Scientific Computing Center
(NERSC).

REFERENCES

[1] http://www.nersc.gov/users/computational-systems/edison/
[2] Deborah T. Marr etal., Hyper-Threading Technology Architecture

and Microarchitecture, Intel Technology Journal, Volume 6, Issue
1 p.11. 2002.

[3] William Magro, Paul Petersen, and Sanjiv Shah, Hyper-Threading
Technology: Impact on Compute-Intensive Workloads, Intel
Technology Journal, Volume 6, Issue 1 p.1, 2002.

[4] http://www.democritos.it/activities/IT-
MC/cluster_revolution_2002/PDF/11-Leng_T.pdf

[5] http://www.cenits.es/sites/cenits.es/files/paper_performance_study
_of_hyper_threading_technology_on_the_lusitania_supercomputer
.pdf

[6] http://www.nersc.gov/research-and-development/performance-and-
monitoring-tools/sustained-system-performance-ssp-benchmark

[7] http://www.nersc.gov/users/computational-systems/hopper/
[8] http://www.nersc.gov/research-and-development/benchmarking-

and-workload-characterization/nersc-6-benchmarks/
[9] http://phoenix.ps.uci.edu/GTC/

Figure 7. The run time comparison of Quantum Espresso running with HT (dual stream) and without HT (single stream) over a range of node counts
with a standard benchmark, ausurf112 (containing 112 atoms). At each node count, the two runs with and without HT used the same number of MPI

tasks, but HT runs used twice as many threads per MPI task.

Quantum Espresso

[10] M. Marsman. (Oct. 14, 2011). The Vasp Guide [online]. Available:
http://cms.mpi.univie.ac.at/vasp/vasp/Introduction.html

[11] Quantum Espresso. (2012). General Documentation [online].
Available: http://www.quantum-espresso.org/?page_id=40

[12] Theoretical Biophysics Group University of Illinois, (April 5,
2012). NAMD User’s Guide [online]. Available:
http://www.ks.uiuc.edu/Research/namd/2.9b3/ug/

[13] http://lammps.sandia.gov/
[14] http://charm.cs.uiuc.edu/research/charm/
[15] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma,

H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus,
W.A. de Jong, "NWChem: a comprehensive and scalable open-
source solution for large scale molecular simulations" Comput.
Phys. Commun. 181, 1477 (2010); NWChem. (Oct. 5, 2011).
NWChem 6.1 User Documentation [online]. Available:
http://www.nwchemsw.org/index.php/Release61:NWChem_Docu
mentation

[16] http://www.emsl.pnl.gov/docs/global/
[17] http://software.intel.com/en-us/intel-vtune-amplifier-xe
[18] Internal communication between NERSC and Cray
[19] http://www.nersc.gov/users/software/debugging-and-profiling/ipm/
[20] http://icl.cs.utk.edu/papi/
[21] /http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops

