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ABSTRACT

The co-design of architectures and algorithms has been postulated as a strategy for achieving Exascale
computing in this decade. Exascale design space exploration is prohibitively expensive, at least partially
due to the size and complexity of scientific applications of interest. Application codes can contain millions
of lines and involve many libraries. Mini-applications, which attempt to capture some key performance
issues, can potentially reduce the order of the exploration by a factor of a thousand. However, we need
to carefully understand how representative mini-applications are of the full application code. This paper
describes a methodology for this comparison and applies it to a particularly challenging mini-application.
A multi-faceted methodology for design space exploration is also described that includes measurements
on advanced architecture testbeds, experiments that use supercomputers and system software to emulate
future hardware, and hardware/software co-simulation tools to predict the behavior of applications on
hardware that does not yet exist.

Published by Elsevier B.V.

1. Introduction

The United States Department of Energy’s mission needs in
energy, national security and science are predicted to require a
thousand-fold increase in supercomputing performance during the
next decade [1]. However, the transition to Exascale systems that
are operable within affordable power budgets will not be possi-
ble based solely on existing computer industry roadmaps [2]. The
conclusion is therefore that we not only need to support an accel-
eration of industry roadmaps to deliver power efficient architec-
tures but that we also need to augment this with modifications, or
in some cases rewriting of applications to utilize new approaches
to hardware design and significantly increased scale [3]. The ben-
efits of doing so are profound as they impact the entire computing
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industry, addressing cross-cutting issues such as energy efficiency,
concurrency and programmability for users of single workstations,
data centers and large supercomputers. For the users of Exascale
machines there will be additional challenges including the scala-
bility and reliability that are brought about by the extreme size of
such systems.

Given the complexity of constructing such large systems and
the problems associated with modifying applications to run
on them, a dialog needs to be established between computer
companies and application developers where feedback is able to
rapidly assess and optimize designs as they are created. In this
process we envisage assessment based on balancing performance
benefit versus cost in terms of software complexity, portability,
silicon area, etc. In order for trust to exist in this dialog a number of
approaches might be considered including execution on prototype
or early design hardware, the construction of application models
including simulators or analytic performance models and an
attention to creating solutions that work across a broad range of
applications and do not benefit a single problem.
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The scale of modern scientific applications is however a poten-
tial limiter for rapid prototype assessment. Applications are typ-
ically millions of lines of source and are written to use complex
algorithms and data structures. Whilst our eventual goal is to run
applications on such large systems the effort required to port them
is likely to be prohibitive if multiple platforms must be assessed in
short time frames. It is in this context that the notion of a mini-
application has been developed—a mini-app is a condensed imple-
mentation of one or multiple key performance issues that affect
parent codes, written to be amenable to refactoring or change but
representative enough to be useful in the scientific problem do-
main.

Our proposed methodology for Exascale design space explo-
ration, which we discuss in this paper, includes measurement on
prototype hardware, experimentation in the form of refactoring
and re-implementation using a variety of programming models
and algorithms and prediction using architectural simulators. To
this end, we are investigating several architectural testbeds which
are representative of industry trends including Intel’s Many Inte-
grated Core (MIC) processors, GPUs from NVIDIA, Fusion APUs from
AMD and nodes from Convey and Tilera. Such studies are provid-
ing useful feedback to computer architects, application develop-
ers and algorithm researchers. Our experimentation is also wider
than just hardware, including evaluation of execution models such
as ParalleX and low-level activities such as direct measurement of
energy use in contexts such as the variation of network injection
bandwidth.

The ability to predict the performance, and more importantly
the performance limitations, of hardware which does not currently
exist or is significantly different from contemporary systems is
a key facet of design exploration. Since many proposed Exascale
point designs are currently proprietary or encumbered with in-
tellectual property, many of our early evaluations are being con-
ducted using the notion of an Abstract Machine Model (or AMM)
which defines the key architectural building blocks but no specific
detail. We then are able to augment AMMSs with details provided by
performance models, architectural simulators and information ob-
tained from our mini-applications running on test-bed platforms
to inform us of performance trade offs and available design deci-
sions.

In this work we provide a detailed overview of our Exascale
methodology including descriptions of currently running projects
to produce relevant mini-applications, accurate and relevant
architectural simulation tools and our prototype test bed program
which is being used to drive programming model assessments
and improvements in our simulation and modeling capabilities.
In addition we describe a validation methodology which is being
developed to demonstrate the applicability of mini-applications to
their parent codes enabling HPC vendors and researchers to have
a high degree of confidence in results obtained from studies using
mini-apps.

2. Miniapplications

Full-scale computational science and engineering (CSE) ap-
plications are often large and complex, depend upon numerous
third-party libraries and require substantial systems programming
expertise in order to compile and execute. Because of this, we are
compelled to use application performance proxies for early-phase
design studies meant to target a particular suite of applications.
Numerous types of proxies are useful for design studies, depending
on the specific context. Fig. 1 summarizes some of the key proxies
used by the systems performance community.

Application performance is determined by a combination of
many choices: hardware platform, runtime environment, lan-
guages and compilers used, algorithm choice and implementation,

and more. In this complicated environment, we find that the use
of mini-applications is an excellent approach for rapidly explor-
ing the parameter space. Furthermore, use of mini-applications en-
riches the interaction between application, library and computer
system developers by providing explicit functioning software and
concrete performance results that lead to detailed, focused discus-
sions of design trade-offs, algorithm choices and runtime perfor-
mance issues.

Unlike a benchmark, the result of which is a metric to be ranked,
the output of a miniapp is a richer set of information, which must
be interpreted within some, often subjective, context. We distin-
guish this from a compact-application whose purpose is to repli-
cate a complex domain-specific behavior being used in a parent
application. Miniapps are designed specifically to capture some
key performance issue in the full application but to present it in
a simplified setting which is amenable to rapid modification and
testing. Note that this is also distinct from a skeleton application,
which is typically designed to focus on inter-process communica-
tion often producing a “fake” computation. Miniapps instead cre-
ate a meaningful context in which to explore the key performance
issue. Within many of the ASC programs, miniapps are developed
and owned by application code teams; are limited to O(1 K) source
lines of code (SLOC) and are intended to be modified with the only
constraint being the continued relevance to parent applications.

2.1. Mantevo

The Mantevo project [4] provides a set of proxies, or “miniapps”,
which enable rapid exploration of key performance issues that im-
pact a board set of scientific applications of interest to the ASC and
broader HPC community. Mantevo miniapps are tools with uses
throughout the co-design space [5]. They are intended to be fluid,
and a mechanism to explore issues relating to hardware perfor-
mance, programmability, porting, etc. As part of the ongoing work
in developing miniapps under Mantevo, a comprehensive initial
validation exercise [6] has recently been conducted to ensure the
first full release of codes is able to provide strong behavioral cor-
relation to parent physics and engineering application currently in
use.

The Mantevo Project started in 2006 as an effort to develop
tools and environments for studying computational science and
engineering application performance. Very early on in the project,
miniapps emerged as important tools. They provide the right
balance of complexity - capturing the nuances of performance
coupling between distinct computational phases — and ease of use
and refactoring to be accessible and meaningful co-design tools.

The initial miniapp HPCCG was designed to study the perfor-
mance characteristics of preconditioned iterative methods used
in Trilinos [7]. System developers were looking for a small repre-
sentative code to answer questions about the direction of some
coding implementations targeting emerging and expected fu-
ture architectures, including multi-core, many-core, and GPU-
accelerated high performance computers. HPCCG was frequently
used for compiler studies, processor comparison and more. Fur-
thermore, the depth of conversation between algorithms and sys-
tems developers grew with a small, concrete target as the means
for exploration. Based on this experience we started identifying
and deploying miniapps across other application areas of interest.

Each Mantevo miniapp is designed to focus attention on one or
a few key performance characteristics of an application or class of
applications, enabling agile exploration of a variety of issues that
impact performance, ranging from low-level hardware capabilities
to the application.

The current set of miniapps in the Mantevo project are listed in
Table 1. All of the miniapps in Table 1 are available via the GNU
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Proxy Type | Characteristics | Refactoring Performance Size
Scope Modeling (LOC)
Scope

Kernels Small, self Can often be Narrow study 10-100
contain code rewritten, but and refactoring
fragments that small size limits | of hotspots.
represent key options.

“hotspots” in an
application.

Benchmarks Typically meant | Limited, if System 100-
to be static code | allowed at all. performance for | 10K
with precise a prescribed
input and usage software
restrictions. implementation.

Compact App | Simplified, but Can be complete | Useful in most 10K—
complete physics | rewritten, but settings except 100K
simulation. may be difficult | very early design

to do if code is studies.
large.

Skeleton app | Accurate Some, but only | Interprocessor 500-5K
interprocessor at the level of communication
communication communication performance;
model with strategies. asymptotic
synthetic communication
computation. complexity and

scheduling.

Miniapp Focused on one | Complete Any phase of 1K-10K
or a few rewrite or system design,
performance- reorganization, especially an
impacting including new app-system
aspect of the languages, new co-design
application. system features, | environment.

ete.

Fig. 1. Summary of application performance proxies.

Table 1
List of current Mantevo miniapp efforts.
Miniapp Description
HPCCG Sparse linear algebra (Krylov) solver
miniFE Unstructured implicit FEM/FVM
phDMesh Explicit FEM, contact detection
miniMD Molecular dynamics for force computations
miniXyce Circuit RC ladder
miniExDyn? Explicit Dynamics Finite Element
minilTC? Implicit Thermal Conduction Finite Element
miniGhost? FDM/FVM
miniAero® Aero/fluids
miniDSMCP Particle-based simulation of low-density fluids
¢ New.

b Under development.

Lesser General Public License (LGPL) [8] and are downloadable
from the Mantevo website.!

2.2. Validating miniapps

Validation is the process of determining the degree to which a
model is an accurate representation of the “real world” from the
perspective of the intended uses of the model.?For our purposes,

1 http://mantevo.org.

2 These terms are as defined by the American Society of Mechanical Engineers
(ASME, 2006) and the American Institute of Aeronautics and Astronautics (AIAA,
1998), and this usage has basically been adopted by the United States Departments
of Energy (DOE) and Defense (DoD). IEEE definitions (IEEE, 1991) are also useful and
relevant in this context.

validation is the process of assessing the evidence of how closely
the miniapp resembles the full application in the performance
domain of interest. That is, within the context of the intent of the
comparisons of a model with the “real world”, we must verify that
the applications (“real world”) and miniapps (“model”) compare
well in the performance dimensions of interest. All of the work
(and possibly art) in this methodology will be defining a set
of comparisons that allow us to draw conclusions of this kind
about the miniapps. We must also understand how close these
comparisons should be for us to be able to conclude that the
miniapps are suitably accurate models of real code performance,
or that they are not. There will clearly be significant components of
judgment embedded in this methodology given the difficult nature
of this problem.

Our methodology, developed in the spirit of experimental val-
idation as described in [9-12], is designed to answer the ques-
tion: “Under what conditions does a miniapp represent a key
performance characteristic in a full app?” This approach requires
extensive knowledge of, and experience developing, executing,
profiling, maintaining, and extending multi-scale, multi-physics
scientific and engineering application software, targeting highest
performance computing platforms. It also requires a strong under-
standing of the miniapps and their intended use: what they are in-
tended to represent and what they are not intended to represent.

The methodology is as follows: For a set of diagnostic runtime
performance characteristics or elements, which we loosely refer to
as the performance domain,

{D}:D'lyDZs'-',Dmv (1)
let
{B} = B1, B, ..., By, (2)
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Fig. 2. Effects of the number of cores per node on the FEA and solver phases of Charon and miniFE.

be a corresponding set of baseline full application observational
referents, (the “validation data”) and let

(A} = A1, A, ..., Ap, (3)

be a set of corresponding miniapp measurements, for p > n.

We then consider the difference between the application refer-
ents and the miniapp measurements in the performance domain
defined by (1) as some kind of mathematical norm, which we will
also call a validation metric:

Xi = ||B;i — Aill;, =i (4)

Then assessment of the validation metric information might
then be posed as:

0
[ pass, forT! > X; > T?
Vi= 0 caution, for Ti2 > X > T,-3 (5)
fail, for X; > Tf orX; > Tl-3
where V; is a validity statement attached to performance domain
dimension i for some thresholds T{, forj=1,...,3.

While Eq. (5) looks like a generally useful algorithm for assess-
ment, we caution there is a great deal of overloading going on in
this simple expression. For example, the choice of thresholds could
clearly be extremely difficult. The willingness to even evaluate va-
lidity based on a relatively direct threshold assessment is open to
debate, and developing the set V;,i = 1,..., n leaves open the
issue of how all of this information is combined into a single ap-
praisal of the validity of the minapp. Nonetheless, this logic is a
clear illustration of the kind of ideal thinking that should underlie
the validation assessment of miniapps.

This framework provides direct advantages. First, the input in-
formation D, B,and A and are open to challenge and refinement, are
mutable and extensible, and thus the role interpretive judgment in
the final results of validity assessment is transparent within the
context of use. For example, new diagnostics, new or corrected
baseline observations, and new or corrected measurements could
be added to the model in the service of better assessment. Second,
the way the results are computed can be easily subjected to peer-
review scrutiny.

We illustrate this method by examining the relationships
between an application named Charon and the Mantevo miniapp
called miniFE. Charon [13,14] is an electronic device simulation
application code, solving the drift-diffusion equations that relate
the electric potential to the electron and hole concentrations in
these devices. One of the discretization approaches employed in
Charon is a finite element method (FEM) on unstructured meshes.
Execution is characterized by a finite element assembly step (FEA)
followed by the solution of the nonlinear system using a fully-
implicit Newton-Krylov (NK) solution approach. Performance of
NK is dominated by the Krylov solver, either BiCGSTAB [15] or
GMRES [16]. Charon employs the solvers in Trilinos[7], including
the Krylov solvers from the Trilinos Aztec package [17]. MiniFE is

an implicit finite-element miniapp which includes a FEA step as
well as a solver phase using the Conjugate Gradient method [18].

We examine performance on three distinct architectures. Cielo,
a Cray XE6, consists of dual-socket 8-core AMD Opteron Magny-
Cours processor based nodes connected by a custom Gemini net-
work configured as a three dimensional torus. Chama consists of
dual-socket 8-core Intel Sandy Bridge processor based nodes con-
nected by a Qlogic InfiniBand network configured as a fat tree.
Red Sky consists of dual-socket quadcore Intel Nehalem proces-
sor based nodes connected by a Mellanox InfiniBand network con-
figured as a three dimensional torus. We supplement these
machines with related architectures that allow for more flexible
experiments.

We begin by specifying on-node memory bandwidth as a
diagnostic. A typical means for exploring this issue is to vary the
number of processor cores employed on the node and comparing
the resulting performance efficiency. Fig. 2(a) illustrates the results
of this experiment applied to the solver phases on a Cray XE6 node
configured using dual-socket 12-core AMD Opteron Magny-Cours
processors. As has been observed in a variety of cases [19-21], the
efficiency of each socket decreases as the number of cores per node
increases. A proportional comparison (Fig. 2(b)) reveals that the
responses by Charon and miniFE are within about 13% at worst,
suggesting that the miniapp is predictive of the effects of memory
bandwidth on Charon. However, in a validation study, stronger
evidence is needed to make this claim.

Using a dual-socket quadcore Intel Nehalem 5560 clocked at
2.8 GHz processors and a dual-socket 8-core AMD Magny-Cours
6136 clocked at 2.4 GHz, experiments were configured to better
focus on memory bandwidth. The machines were set up to provide
memory speeds of 800 MHz, 1066 MHz, and 1333 MHz. Results,
illustrated in Fig. 3, show that the FEA phases for miniFE and
Charon are not impacted by the change in bandwidth, while their
solvers are. A proportional comparison (Fig. 3(c)) shows miniFE is
within 4% of all measures of Charon, leading us to claim that miniFE
is predictive of Charon with regard to on-node memory bandwidth.

The next diagnostic considered cache performance, again with
the separation of between the FEA and solver phases, and again
using the Nehalem and Magny-Cours nodes, each with three levels
of cache (L3 is shared across cores in a socket for Nehalem, and
across cores in a die for Magny-Cours). The hit rate, defined as the
proportion of the number of times the processor finds needed data
in a cache with the total number of times it looks for data in that
cache, plays a significant role in processor performance. Results
are shown in Fig. 4. For the FEA phase, Charon and miniFE show
strong use of level 1 cache, with a proportional difference of no
more than 3%. However, level 2 and 3 hit rates are significantly
different, with miniFE 3 and 6 times, respectively, from Charon,
leading us to claim that the cache performance of FEA in miniFE is
not predictive of that for Charon. For the solver phase, we believe
that cache performance is predictive. Although the thresholds for
acceptance for level 2 and 3 are arguably high (approximately 20%),
the trends are clear.
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Fig. 4. Cache behavior of the FEA and solver phases of Charon and miniFE.

Most interesting is that Charon’s surprisingly low level 2 hit rate
seen on the Nehalem is also seen with miniFE. This is unexpected
based on past observations on related architectures, but care
must be taken with regard to attribution. Additional experiments
are required to make strong causal claims, since it is possible
that measurement intrusion is to blame, or perhaps a hardware
configuration issue.

Next we examine weak scaling characteristics of Charon and
miniFE to large core counts. Diagnostics include the Charon/Aztec

BiCGSTAB solver with two preconditioning strategies, an incom-
plete factorization algorithm with no fill (ILU(0)) and a multilevel
(“ML”, e.g. multigrid) algorithm [22]. Results for each are analyzed
in comparison to miniFE’s unpreconditioned Conjugate Gradient
solver. The general idea is that Krylov solvers perform common
computations (e.g. addition and scaling of vectors, inner products,
and sparse matrix-vector products). Further, applications typically
use a breadth of preconditioners, so our goal is to understand
where specificity is required and where it is not necessary.
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Performance is illustrated in Fig. 5. We have not yet determined
an effective means for analytically comparing scaling behavior. In-
stead we can reason about the curves by first noting that perfor-
mance is different on different architectures, which we speculate
is a function of the difference preconditioning strategies. Although
the difference between miniFE and Charon with ML precondition-
ing is large, this is not reason enough to reject the relationship. In-
stead, we claim that miniFE is not predictive of Charon with ML
because miniFE does not include the sorts of computations found
in ML. For example, an analysis of the interprocess message pass-
ing requirements shows that ML sends over 40% more messages
per core than the non-multilevel preconditioners.

The difference between Charon with ILU(0) preconditioning
and miniFE is less clear, with reasoning driven from different per-
spectives in the co-design space. For example, from the perspective
of some hardware architects, these two approaches are not pre-
dictive. However, an algorithm developer investigating new pro-
gramming models could view miniFE performance as reasonably
predictive. Therefore we assign this diagnostic a caution assess-
ment.

In summary, ensuring that a miniapp completely fulfills its in-
tent is a difficult and probably ongoing task. Further, the runtime
behavior of a complex scientific application is typically problem
dependent, and therefore it is important to understand the dif-
ferent ways that a code can be used and to have a means for
configuring the miniapp to mimic the important features under
consideration. Thus our approach is to continue to build up “a body
of evidence” in support of the goals of a miniapp, combining formal
validation techniques with our knowledge and experience bases.
This includes statistical analysis of multiple runs, adding, for ex-
ample, error bars to the graphs and thus informing our analysis.

3. Architectural testbeds

Advanced architecture testbeds provide a means for exploring
performance issues that are expected to impact our applications on

future architectures. These have proven to be useful tools for exam-
ining many of the issues throughout the design space, focusing our
efforts and enabling reasoning about specific characteristics and
capabilities as they relate to our goals.

In this section we describe three such systems, and illustrate
how one such architecture, in conjunction with direct vendor
interaction, can be used to prepare our applications for what we
believe will be significant changes.

3.1. Teller—AMD fusion cluster

Teller is a 104-node cluster of single-socket AMD A8-3850 Llano
Fusion APU nodes. Each APU-die comprises four K-10-class AMD
Xx86-64 cores running at 2.90 GHz. Cores have private 64 kB L1
instruction and data caches and a 1 MB level-2 (giving a 4 MB
L2 in total). The GPU portion of the APU is a modified 400-core
Radeon HD 6550D which runs at 600 MHz. GPU cores are currently
5-way SIMD. In order to enable the study of performance as a func-
tion of memory frequency, 100 cluster nodes contain 16 GB DDR3
1600 MHz memory and 4 nodes contain 8 GB DDR3 memory at
1866 MHz. All nodes are equipped with a single 256 GB Micro C400
SSD storage device enabling us to study local checkpointing strate-
gies. The machine interconnect employs QLogic QSFP QDR Infini-
Band arranged in a 2-level fat-tree topology.

3.2. Arthur—Intel MIC cluster

Arthur is a 42 node cluster of Intel MIC (Many Integrated Core)
accelerator cards. Nodes in the cluster comprise a dual-socket
hex-core Westmere-EP Xeon processors, clocked at 3.47 GHz with
24 GB of DDR3-1600 MHz memory, connected via a PCI-Express
connection to a Knights Ferry co-processor (giving 84 cards/co-
processors in total). Each Knights Ferry processor is itself a
30-core chip clocked at 1.05 GHz and connected to 2 GB of GDDR5-
1800 MHz memory. The machine interconnect is provided by
Mellanox Infiniscale IV QDR Infiniband via a fat tree topology with
five 36-port switches.



52 S.S. Dosanjh et al. / Future Generation Computer Systems 30 (2014) 46-58

Memory
Controller(s)

Card Memory
(GDDR)

Fig. 6. Intel MIC architecture.

PCI-Express

Host

NVIDIA
GPU

NVIDIA
GPU

Gemini

ASIC
AMD AMD
Interlagos : Interlagos
16-core 16-core

Fig. 7. Cray XK6 node.

Each processor core on the Knights Ferry device is a modified
variant of Intel’s x86 architecture in which computation has been
augmented with a 16-wide vector processing unit (VPU) and four-
way hardware threading (see Fig. 6). Cores have access to a 32 Kilo-
byte (KB) L1 instruction cache, 32 kB L1 data cache, and an inclusive
256 kB L2 cache. A coherent ring network connects L2 caches to the
memory controller and provides high bandwidth core-to-core data
transfers. Transfers too and from the host occur via DMA transfers
over the accelerator’s PCI-Express connection.

3.3. Curie—NVIDIA/cray cluster

The XK6 is the latest refinement to the X-family of machines
developed by Cray. In this new series one processor is removed
from each compute node and replaced with an NVIDIA Tesla-series
GPU using a PCI-Express Gen-2 bus for connectivity (see Fig. 7).

At the time of writing the GPU used for node design is an
NVIDIA “Fermi”-class GPU with 6 GBytes of GDDR5 memory and
16 streaming multiprocessors (SM), each containing 32 thread pro-
cessing cores, are provided on the GPU card, enabling high speed
transfers to/from the on-chip compute units. The Curie testbed
system consists of 52 nodes, with AMD Opteron 2.1 GHz 16-core
Interlagos 6272 processors and 32 GB of system memory. The
Interlagos is also of interest in our studies since it utilizes the
recently announced Bulldozer core in which a core-pair each have
two integer processing units (one per core) but a unified floating-
point pipeline. This design is intended to reduce power for scien-
tific computations where multiple integer operations are executed
to obtain array addresses before a floating-point calculation can be
issued.

3.4. Understanding computation on a GPU

Computation on a GPU can be significantly different from that
on a CPU. In this section we focus on the FEA (finite element assem-
bly) phase of miniFE. Implemented using the CUDA programming
model and executed on an NVIDIA Fermi GPU of the sort found on

Curie, this work illustrates a key performance issue, suggests an
algorithmic modification, and predicts how an expected hardware
modification will improve performance of this computation.

The FEA phase involves computing the element operators for
each element which are then summed into the matrix. Threads
operate on separate elements with the computation of the element
operator and the summation into the linear system performed
within a single kernel. Although the computation of the element
operators is embarrassingly parallel, the summing into a linear
system requires synchronization to avoid data race conditions. The
use of a single kernel is preferred in this instance because it avoids
having to store the state for the element operator and then having
to later re-read that state during summing into the linear system.

In order to minimize code modifications, one thread operates
on one element in the construction of the element operator.
However, the code was modified so that matrix coefficients are
stored in ELL sparse matrix format rather than compressed-
row (CSR) form, shown to result in stronger performance in the
subsequent solver phases [23]. Atomic addition operations prevent
race conditions in updating the global matrix. Computation of the
element operator is floating-point intensive, including computing
the matrix determinant and the Jacobian. However, analysis shows
that the performance is bandwidth bound due to register spilling.

The cause of this register spilling was traced to the element
operator which requires a large thread state, including 32 bytes for
node-IDs, 96 bytes for node coordinates, 512 bytes for the diffusion
matrix, 64 bytes for the source vector as well as data to store the
Jacobian and matrix determinant. The Fermi architecture supports
up to 63 32-bit registers per thread, limiting the total register
storage to 252 bytes. Thus any additional state will be spilled to
(at least) L1 cache and potentially further.

The L1 cache, up to 48 kB, is shared by 512 threads, providing
(on average) 96 bytes to each thread. The L2 cache is 768 kB
shared by 8192 threads, again leaving only 96 bytes of storage per
thread. This is not sufficient to store the operator state, so registers
are spilled to global memory, causing the computation to become
bandwidth bound.

One method to improve the performance of bandwidth bound
kernels is to increase the occupancy. However, in this case, the ker-
nel’s occupancy is limited by register usage. Since the register
usage is higher than is available in hardware it is not possible to in-
crease this occupancy without further increasing register spilling.

We tuned the kernel to reduce register usage, including algo-
rithmic changes that exploiting symmetry in the diffusion operator
and reordering computations so that data is loaded immediately
prior to being used. We have also applied several traditional opti-
mization techniques including pointer restriction, inlining of func-
tions, and unrolling of loops. Finally, we also position a portion of
the state in shared memory and experimented with L1 cache sizes.
The best performance is achieved by placing the source vector into
shared memory and enabling a larger L1 cache. Whilst these opti-
mizations greatly reduce register spilling, 512 bytes of state is still
spilled per thread. To ensure fair comparison, all optimizations that
were applicable to the original CPU code were back ported, and re-
sulted in improved CPU performance.

The performance of the CUDA version of miniFE was compared
to the MPI-parallel version of miniFE running on a Tesla M2090
and a hex-core Intel Xeon 2.7 GHz E5-2680, using various problem
sizes of N> hexahedral elements. The speedup for each of the three
phases of the algorithm is reported in Fig. 8.

The assembly realizes a four times speedup and the solve
phase is three times faster. The generation of the matrix structure
exhibits a slowdown because it is computed on the host in CSR
format, transferred to the device, and then converted to ELL format.
Whilst it is possible to move this computation to the device, this is
a low priority based on its contribution to total runtime.
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2.7 GHz E5-2680.

Future generations of NVIDIA systems are expected to address
some of the findings from this study, including an increased
number of registers per thread and increases in the size of L1 and
L2 memories. Improvements in the CUDA compiler may also lead
to a reduction in the number of register spills or the impact that
register spills will have on execution time.

4. Experimentation

While small to medium sized testbeds can be used to gain much
needed experience with new technologies, many issues will only
manifest themselves at relatively large scales, making it necessary
to use full scale systems, usually reserved for production work-
loads, as forward looking “testbeds”. Short periods of dedicated
access to large systems can provide a wealth of useful data. For ex-
ample, such dedicated time can be used to gain insight into applica-
tion bottlenecks and the effects of system software on application
performance. One study [24] used kernel-level noise inject tech-
niques to study the effect of operating system (OS) noise on appli-
cations. This study was carried out during dedicated system time
using a custom modified kernel to implement controlled injection
of OS noise. Full scale application runs were then made using the
modified kernel and the effects of various noise signatures were
studied. Such studies would have been impossible without dedi-
cated time and the ability to modify the operating system used on
the supercomputer.

It is also desirable to do empirical experimentation using cur-
rent systems configured to emulate the expected performance
characteristics of future systems. Having flexibility in system con-
figuration enables specific studies, where the number of system
variations can be minimized. This allows the researcher to isolate
the effects of changing specific system attributes. The next section
briefly describes how a Cray XT5 testbed system was used to gain
insight into the sensitivity of several scientific computing appli-
cations to network injection bandwidth. A more detailed descrip-
tion is provided elsewhere [25]. Results from experiments such as
these can be useful for informing analytic modeling efforts, vali-
dating simulation models, and, ultimately, influencing the design
of future supercomputer systems and applications.

4.1. Bandwidth degradation studies

As a proof-of-concept of our approach, we used a small 160-
node, 1920-core Cray XT5 testbed system to evaluate a set of pro-
duction applications from the Department of Energy’s Advanced
Simulation and Computing (ASC) code suit for their sensitivity to
network injection bandwidth. Working with Cray, we modified the
XT5 system’s boot firmware to configure each compute node’s link
to the network for reduced bandwidth. All other system charac-
teristics, such as compute node computational performance and
memory bandwidth were left unchanged.

The resulting experimental platform was then used to dial-in
several different network to compute system balance ratios, and
evaluate the performance of the test applications at each operating
point. The key benefits of this approach are that it is much faster
than software-based simulation and that full-scale application
testing can be performed, rather than the short application traces
used in most simulation studies. The key disadvantage of our
approach is that it is obviously limited in how far the emulated
future system can diverge from the underlying physical system.

Fig. 9 presents results for four applications: CTH, SAGE, xXNOBEL,
and Charon. Each application was evaluated with our experimental
platform configured for full (3.2 GB/s), half (1.6 GB/s), quarter
(800 MB/s), and eighth (400 MB/s) network injection bandwidths.
The results are presented as performance relative to full injection
bandwidth, and are therefore unit-less. For example, a value of
1.5 indicates that the performance measured with the degraded
injection bandwidth configuration was 1.5 times slower than with
no degradation.

The results show that each application is affected by the reduc-
tion in network bandwidth differently. Charon, which is a semi-
conductor device simulation code, is known to be sensitive to
communication latency and sends many small messages. The ex-
perimental results confirm this, showing Charon to be essentially
unimpacted by network injection bandwidth. It would therefore be
possible to save considerable network power for this application,
since network power usage is proportional to bandwidth.

On the other hand, CTH and SAGE are more strongly impacted
because they send relatively large messages that must complete
before moving on to the next time step. For example, the experi-
mental results show over a factor of two slowdown for CTH when
the system is configured for one-eighth network injection band-
width. This would likely not be a good power-performance trade-
off, since it would represent a 30% power saving for a 100% increase
in runtime, assuming a system with an equal power split between
CPU, memory, and network. The most energy efficient configura-
tion would in fact be the one with full bandwidth. The xXNOBEL re-
sults show a similar falloff past 384 cores, likely due to the loss of
the ability to overlap computation and communication.

Our ongoing work involves extending our proof-of-concept
study to a much larger machine, such as the 143 K core Cielo
system. Even the small-scale results presented here are en-
lightening, and provide motivation for some form of network
power-performance configurability in future systems. The planned
larger-scale experiments will provide further evidence and, we
hope, provide useful input for the co-design process leading up to
exascale systems.

5. Prediction

It has been said that it is difficult to make predictions, espe-
cially about the future. This is particularly true in High Performance
Computer architecture, where even making “predictions” about
the present is a notoriously difficult problem. Many of the great
advancements in architecture, which have improved average per-
formance, have come at the cost of increasing system complexity
and decreasing transparency. Branch predictors, memory prefetch-
ers, caches, adaptive routing, even parallel computing itself have all
made it more difficult to understand, reason about, and predict the
performance of modern computers.

For HPC systems, the prediction problem is complicated by a
number of factors.

e Scale: The size of HPC systems has been steadily growing. The
number of processor cores, nodes, and threads in a large HPC
system has been increasing much faster than Moore’s Law. Be-
cause detailed simulation is much slower than actual hard-
ware, the ability to simulate large systems has always lagged
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Fig. 9. Application results.

actual system deployments. Simulators and models must ab-
stract away many details of machine performance to provide
timely predictions.

e Audience: Traditionally, system performance prediction was the
domain of system architects. However, with co-design appli-
cations and algorithms, writers also need access to predictions
about future systems and need to start reasoning about how to
program them. Additionally, procurement agencies need pre-
dictive capabilities to make decisions on future machine pur-
chases and technology investments. Language, runtime, and OS
developers also need to understand how future machines will
perform and be programmed. Simulators and models must be
accessible to a number of audiences.

e Complexity: The set of HPC applications is getting more com-
plex. Traditional physics applications have moved from 1D to
2D to 3D and are now becoming coupled multi-physics appli-
cations with greater adaptivity, load balancing, and visualiza-
tion/analysis requirements. Additionally, new application areas
such as informatics are emerging in the HPC space. These new
application areas may not map well to existing programming
models and practices. Simulators and models must be flexible
enough to model emerging applications.

e Objective functions: In addition to performance, systems must be
optimized with a growing number of new objective functions.
Several studies have estimated that an exascale-class super-
computer will require 100s of Megawatts of power unless the
system is reorganized in a number of ways [26,27]. As these sys-
tems increase in size, the sheer number of components threat-
ens overall system reliability. New packaging techniques such
as 3D stacking or Silicon carriers, may have an impact on sys-
tem temperature. Accurate temperature modeling is required
for accurate power and energy modeling due to its effect on

leakage current. Temperature also impacts reliability by lead-
ing to electromigration and dielectric breakdown failures. Some
failure modes, such as mechanical failures, are dependent in
temperature history and the number of thermal cycles [28]. The
most critical objective function may also be the most difficult to
measure: Cost. In addition to technical factors (chip area, yield
rates, pin counts), market forces can play a major role as can
transient disasters (e.g. the 2011 monsoon floods in Thailand
caused global hard disk prices to increase by 20%-40%). Simula-
tors and models must address a growing number of evaluation
criteria for HPC systems.

e Proprietary data: Commercial hardware vendors often keep se-
cret critical implementation choices which have a major impact
on performance. This lack of information has a severe impact on
the accuracy of simulations and makes it difficult to model ex-
isting systems.

To mitigate these hurdles, a design space exploration needs to
use multiple models of the system and multiple prediction tech-
niques. These techniques range from “Back of the Envelope” es-
timates and “spreadsheet models” to simulation and hardware
prototyping. These efforts require close collaboration and consul-
tation with semiconductor fabrication and packaging groups to
allow understanding of emerging technologies such as 3D die
stacking, silicon photonics, and subthreshold circuits.

For each of these prediction techniques, a design team requires
different representations of both the application problem and the
hardware as well as different sets of tools. To meet these needs,
we can use techniques such as mini-applications (e.g. Mantevo,
Section 2.1), Abstract Machine Models (AMMs) (Section 5.1), and
Simulation frameworks, such as the Structural Simulation Toolkit
(SST) (Section 5.2).
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Fig. 10. Application performance with different memory systems.

5.1. Abstract machine models

An Abstract Machine Model (AMM) is a simplified description
of a computer system that allows reasoning about that system.

Such a model may take many forms. It may be standardized and
machine parsable or may be an informal description for users of a
system. There may be multiple models for a machine at multiple
resolutions and multiple levels of abstraction. These models may
have details on the latencies and bandwidths of different system
components or other characteristics such as the power and energy
cost of different operations or reliability properties like failure
modes and frequencies or soft error rates.

Some existing examples of Abstract Machine models:

e Compiler machine models: GCC and other multi-platform com-
pilers will often include a machine model that describes the
processor core, including internal latencies and instruction sup-
port.

e Tool models: The input files to commonly used simulators or de-
sign tools such as Simplescalar or McPAT represent a type of
machine model. These models are often very specific and are
used as the input to tools like performance analyzers, adaptive
runtimes, compilers, and simulators.

e Analytical models: Abstract mathematical models such as the
PRAM algorithmic complexity or LogP network performance
model provide very simple, but potentially useful tools to rea-
son about and estimate performance. Educational or theoretical
models like the von Neumann architecture, Knuth MIX, or Pat-
terson DLX also fall in this category. Usually the system is char-
acterized by a small number of parameters, allowing simple and
easy analysis.

e Detailed: ISA and Principles of Operation manuals can provide
very detailed descriptions of exactly how a machine works and
its capabilities.

Many of these models are focused on only one part of the system
(e.g. a compiler machine model only addresses the processor), and
may neglect other parts of the system (memory, network, 10).

Like any model, it is difficult to produce a complete AMM before
you start reasoning about the system. Instead, it is created and
refined throughout the design process. The ability to evolve a
machine model is critical, especially when performing design space
exploration for future machines because the co-design process
is filled with moving targets like the applications, architectures,
fabrication processes, etc.

5.2. Structural simulation toolkit

Future Exascale Systems must incorporate substantial advances
in execution model, system architecture, processor architecture,
interconnect, memory, I/O and system software. Coherent explo-
ration of this design space will require a common simulation plat-
form to enable the multidimensional hardware/software co-design

required by a project of this scope. To meet these requirements, a
number of institutions have been developing the Structural Sim-
ulation Toolkit (SST [29,30]) as a common platform for co-design.
The SST provides a scalable parallel architectural simulator for sim-
ulating the huge numbers of architectural components in an exas-
cale system. The SST contains interfaces to a variety of technology
models for estimating power and other system characteristics. It
is constructed in a modular fashion and contains a mix of abstract
and detailed models for processors, memory systems, and inter-
connection networks [31-35].

Many other architectural simulators, such as M5 [36], NS-3
[37], and A-SIM [38], are in widespread use for designing system
components. In addition, there is a long history of packages to
model power dissipation [39,40]. The novel approach of SST is
to include several individual component models in a parallel,
scalable, and open-source framework.

5.2.1. Example design space exploration

Simulators like the SST, when combined with miniapps, allow
fast and efficient design space exploration. This process can be used
to make decisions such as which memory technology and proces-
sor core is best suited to a given problem. One such experiment
looked at the impact of different memory technologies (DDR2,
DDR3, and GDDRS5), and processor core issue widths (1, 2, 4, 8
wide issue) on the power, performance, and cost of the HPCCG and
Lulesh [41] miniapps.

For this exploration, the SST simulator was used with the GeM5/
x86 processor model and DRAMSim2 memory model. Power esti-
mates were done with DRAMSim?2’s internal models and McPAT
for the processor. Cost estimates were done using the IC Knowl-
edge [42] chip cost estimation program and memory costs from
the DRAM Spot Price Index (www.dramexchange.com).

The memory system options compared DDR2 (cheap, low
power, but antiquated performance), DDR3 (higher performance,
reasonable power), and GDDR5 (expensive, high power, very high
bandwidth).

Based solely on performance (Fig. 10), GDDRS5 provides a much
better solution. Across a range of processor core widths, GDDR5
was 26%-47% faster than DDR3 (on Lulesh) and 32%-41% faster
than DDR3 (on HPCCG). Examined only from this perspective,
GDDR5 would be the clear winner.

However, though GDDR provides better raw performance,
DDR3 generally has better performance per Watt. On both mini-
apps DDR3’s performance per Watt is roughly equal to GDDR5 for
wide processor cores and up to 107% higher for narrow processors
(Fig. 11).

Performance per Dollar was also more varied. For Lulesh, DDR3
was better then GDDR5 for narrow cores (1-2 wide), roughly the
same at 4-wide and worse for 8-wide. For HPCCG, DDR3 was better
for 1-4 wide cores, but lost out for 8-wide (see Fig. 12).

Similar effects can be seen with processor issue width. Wider
processor cores can issue more instructions/cycle and always per-
form better than narrow cores. However, wide cores consume
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more area and power. Often the increase in performance is linear or
sub-linear, while the increase in cost and area is super-linear. This
is because many processor structures scale super-linearly with the
processor’s issue width. For example, register file energy per access
and area scales at roughly O(w'®) [43]. Chip cost is directly related
to area because as chip area increases the number of chips that can
fit on a wafer decreases. Also, because of the distribution of defects
on a wafer, larger chips tend to have much lower manufacturing
yields.

In our simulations, wider processors were indeed faster. On
Lulesh, an 8-wide processor was 78% faster than a single-issue core.
However, it also used 123% more power. In general, for both apps,
1-2 wide cores were the most power efficient and 2-4 wide cores
were the most cost efficient.

So, while wider cores require a shorter time to reach a solution,
they tend to require much more energy to reach a solution.

5.2.2. Role of simulation in co-design

These simple design space explorations show that the fastest
memory technology is not always the best (DDR beats GDDR) due
to power and cost concerns. Additionally, it is hard to declare a
single “best” processor because of the complex tradeoffs between
cost, performance, and power.

Simulations can provide a better understanding of which
configurations are best for a given application and can be used as a
basis for application optimization and vendor guidance.

6. Conclusions

A methodology for comparing a mini-application and a full
application code was postulated. It was used to study differences
between a finite-element miniapp and a device physics code. The
miniapp did remarkably well on sensitivity to memory bandwidth;
there was greater variation between the application code and the
mini-application on cache behavior.

A variety of advanced architecture testbeds are being used
to study performance issues of key algorithms. These studies

are helping guide algorithms research and are providing useful
feedback to computer architects. Excellent performance was
obtained for a very challenging finite-element mini-application on
a Nvidia GPU. Register spilling was identified as a key issue that
must, in the future, be overcome through architecture and system
software enhancements, as well as through algorithms research.

Network bandwidth degradation studies on supercomputers
are helping define network requirements for future systems. These
studies are also helping identify methods for improving application
performance.

And finally, validated hardware/software co-simulation tools
are needed to enable co-design. One such multi-fidelity software
tool, the Structural Simulation Toolkit, was described in this paper.
Initial validation results are encouraging. Several architecture
studies using SST were also discussed.
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