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ABSTRACT

Preparations for exascale computing have led to the realiza-
tion that computing environments will be significantly dif-
ferent from those that provide petascale capabilities. This
change is driven by energy constraints, which has compelled
hardware architects to design systems that will require a
significant re-thinking of how application algorithms are se-
lected and implemented. The “codesign” principle may offer
a common basis for application and system developers as
well as architects to work synergistically towards achieving
exascale computing. This paper aims to introduce to the
embedded system design community the unique challenges
and opportunities as well as exciting developments in exas-
cale HPC system codesign. Given the success of adopting
codesign practices in the embedded system design area, this
effort should be mutually beneficial to both communities.
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1. INTRODUCTION

Computational requirements for energy research, national
security and advanced science are predicted to require a
thousand-fold increase in supercomputing performance dur-
ing the next decade [16]. However, the transition to exascale
high-performance computing (HPC) systems that are oper-
able within affordable power budgets will not be possible
based solely on existing computer industry roadmaps [4].
Thus we must not only support an acceleration of indus-
try roadmaps to deliver power efficient architectures but we
must also augment this with modifications to, or in some
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cases rewriting of, applications so that new approaches to
hardware design may be utilized at a significantly increased
scale [1]. The benefits of doing so are profound in that
it impacts the entire computing industry, addressing cross-
cutting issues such as energy efficiency, concurrency and pro-
grammability for users of single workstations, data centers
and large supercomputers. For the users of exascale ma-
chines, there will be additional challenges including the scal-
ability and reliability that are brought about by the extreme
size of such systems.

It is well accepted that HPC system development practice
requires fundamental changes. The “codesign” principle may
offer a common basis for application and system developers
as well as computer architects to work synergistically to-
wards achieving exascale computing. Codesign has a long
track record in the embedded system design community and
plays a key role in delivering performance and energy effi-
ciency for cost-conscious consumer devices. However, how to
translate the codesign principle into concrete codesign prac-
tices still represents a frontier to be explored by the HPC
community.

Considerable effort is being invested for developing system-
atic approaches for architecture and algorithm codesign in
the HPC community. For example, a suite of application
proxies, called C)miniapps() are being developed to aid the
exploration of the architectural design space. Simulation
tool suites are being constructed to allow performance/power
analysis for different architectures running different algo-
rithm implementations. Recent efforts have identified var-
ious means to reconfigure code for extracting the perfor-
mance potential of heterogeneous computing resources (e.g.
GPU-accelerated multicore nodes) for important computa-
tions such as sparse matrix operations. Programming mod-
els are evolving to ease the burden on the code developer
while at the same time focusing attention on key perfor-
mance issues. At the same time, this work has also identi-
fied ways in which architectures could be modified to bet-
ter support these tasks, including wider registers and faster
memory subsystems. Reductions in energy consumption re-
main a challenging issue for hardware, system software, and
algorithm and application developers. All these efforts are



essential for achieving more cost-effective and efficient HPC
system designs.

This paper aims to introduce to the Electronic Design Au-
tomation (EDA) community the exciting development to-
ward exascale HPC system codesign. We begin by discussing
HPC system codesign challenges and opportunities, and de-
scribing important design space considerations. We then
elaborate the importance of application proxies and their es-
sential features. Lastly, we share some industry experiences
with applying codesign principles in this context. We believe
that there are many new research problems to be addressed
in this area and that the expertise of EDA researchers can
be valuable to tackle some of these problems.

2. CODESIGN CHALLENGES AND OPPOR-

TUNITIES

Exascale computing will require a radical redesign of HPC

node architectures to fit within emerging constraints on power,

the increasing cost of data movement, and stalled processor
clock rates. Applications and algorithms will need to adapt
to the evolution of node architectures. The codesign of appli-
cations, architectures and programming environments will
enable navigation of the increasingly daunting constraint
space for feasible exascale system designs to achieve more
balanced, superior systems.

Conventional HPC system design involves a pipelined col-
laboration process that primarily engages in requirements
gathering at the input of the design process and evaluation
of the result after the product is delivered 4-6 years later.
However, the rapid and disruptive changes anticipated in
hardware design over this next decade necessitate a more
agile development process, such as the hardware-software
codesign processes developed for rapid product development
in the embedded space. Design methodologies on which we
have relied so far never had to consider power constraints or
parallelism of the scale being contemplated for exascale sys-
tems. Furthermore, the programming model and software
environment for future extreme-scale systems is anticipated
to be substantially different from the current practice. The
designers of HPC hardware and software components have
an urgent need for a systematic design methodology that
reflects future design concerns and constraints.

The codesign strategy is based on developing partnerships
with computer vendors and application scientists and engag-
ing them to participate in a highly collaborative and itera-
tive design process well before a given system is available
for commercial use. The process is built around identifying
leading edge, high-impact scientific applications and provid-
ing concrete optimization targets rather than focusing on
speeds and feeds (FLOPs and bandwidth) and percent of
peak. Rather than asking “what kind of scientific applica-
tions can run on an exascale system” after it arrives, this
application-driven design process instead asks “what kind of
system should be built to meet the needs of the most impor-
tant science problems.” This leverages deep understanding
of specific application requirements and broad-based com-
putational science portfolio. Putting delivered scientific ap-
plication performance into the driver’s seat of the design
process is essential to define a common optimization target
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for all of the design teams — from hardware to applications.

Target application programs often consist of a million source
lines of code involving multiple programming languages, third
party library dependencies, and other complexities. To ad-
dress this complexity, we are considering a software model
which includes application proxies, providing a tractable
means for exploring key issues associated with design goals.
Different types of proxies are required to implement differ-
ent aspects of the codesign process. Table 1 shows several
proxies and their definitions. Figure 1 depicts the interplay
between the hierarchy of reduced applications in code anal-
ysis for codesign.

Full Workload

Takes 100 people to rewrite
but only two people understand it

Coupled Multiphysics Application

Hydro, radiation transport, etc...
All Application Kernels,
but stripped down to essentials

Just the communication (halo
exchange) or per-core compute load

CG, Elliptic Solve, Stencil, PIC particle
push vs. particle

One person can rewrite it,
but anybody can understand it

Composite Tests
Full Application

Compact apps

Skeletons

Integration (reality) Increases
Understanding Increases

Kernels

Figure 1: Depiction of the interplay between the hi-
erarchy of reduced applications that we employ in
the codesign process. Kernels enable rapid explo-
ration of new languages and algorithms because of
ease of rewriting while full applications are harder
to rewrite, but ensure adherence to original appli-
cation requirements.

Constitutive
Models

Simulation Scope/Parallelism

Crude Rough Cause Very Exact
guess idea and good hardware
effect estimates model
Simulation Fidelity
Figure 2: Multiple modeling approaches are re-

quired to cover both the scale and accuracy required
to understand system design trade-offs. The two key
axes for simulation and modeling techniques are fi-
delity of the model (horizontal axis) and the scale of
system you can simulate.



Table 1: Application proxies and their definitions.

Surrogate

Description

Compact app.
relative to full apps.

Small app. having fewer features and simplified boundary conditions

Mini-app.

Small, self-contained program that embodies essential performance char-
acteristics of key applications.

Skeleton app.
run in a simulator.

Captures control flow and communication pattern of app. Can only be

Proxy app.

General term for all the above “app” approaches.

Mini-driver
packages.

Small programs that act as drivers of performance-impacting library

Kernel

Modeling, simulation, and compiler analysis all play syner-
gistic roles in the codesign process to cover a broad space of
design parameters. Figure 2 shows that a multi-resolution
approach using multiple modeling methodologies should be
employed to cover both the scale of exascale systems and
the fidelity required to have confidence in our design choices.
Tools such as cycle accurate hardware simulation (the paral-
lelogram in Figure 2) offer extreme detail in their modeling
capability, but limit the scale of system that can modeled
to node size or small clusters. Constitutive models (the tri-
angle in Figure 2) and other empirical modeling methods
can cover much larger systems, but by definition only model
effects included as parameters in the model. The major-
ity of modeling is done by empirical models because they
are faster to construct and evaluate, but the software-based,
and cycle-accurate models are used to verify that the sim-
pler model has included all important effects, and has not
neglected anything any essential (but unanticipated) effects.

Architecture simulation (e.g. [11, 9, 6]) provides an avenue
to experiment with hardware configurations, programming
models, and algorithms on exascale class machines before
full implementations of the hardware and software compo-
nents of a system are available. Models of the hardware,
the runtime system, and the application can be integrated
into to the simulation to evaluate the trade-offs between
design choices imposed on each aspect of the integrated sys-
tem. Coarse-grained simulations (the circle in Figure 2) al-
low large-scale systems to be studied in a way that captures
the complex interactions between various hardware compo-
nents, including those interactions which only arise at the
largest scales.

The ultimate goal of employing a codesign process is to
explore rapidly the vast number of design options (to be
discussed more in the next section) and thus dramatically
accelerate the design cycle. Figure 3 illustrates the prac-
tice as of today and the what we hope to achieve. The
success of codesign depends on (i) building integrated de-
sign teams that include both application experts working in
concert with computer architects and algorithm designers,
and (ii) developing sophisticated tools to accelerate the de-
sign cycle. The optimization target for the process is the
delivered application performance for the combined hard-
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Captures node-level aspects of an algorithm

ware and software environment. Therefore, it is essential to
clearly identify the application up-front to act as the com-
mon metric for success for all aspects of the system design
during the iterative codesign process.

The codesign process involving a collaboration between an
applications team, code analysis, and architectural simula-
tion has been demonstrated for applications ranging from
Climate Modeling (Green Flash) [5], Seismic Imaging (Green
Wave) [10], and an automated co-tuning process that in-
cludes both auto-tuning of hardware and software in the
same process [13].

3. DESIGN SPACE EXPLORATION

Given the complexity of constructing large HPC systems and
the problems associated with modifying applications to run
on them, a dialog needs to be established between computer
companies and application developers where feedback is able
to rapidly assess and optimize designs as they are created.
A systematic way of supporting such a dialog is through a
formal design space exploration process. In this process, we
envisage assessment based on balancing performance bene-
fit versus cost in terms of software complexity, portability,
silicon area, etc. In order for trust to exist in this dialog, a
number of approaches might be considered including execu-
tion on prototype or early design hardware, the construction
of application models including simulators or analytic per-
formance models and an attention to creating solutions that
work across a broad range of applications and do not benefit
a single problem.

Our methodology for exascale design space exploration [3]
includes measurement on prototype hardware, experimenta-
tion in the form of re-factoring and re-implementation using
a variety of programming models and algorithms and pre-
diction using architectural simulators. To this end, we are
investigating several architectural testbeds which are rep-
resentative of industry trends including Intel’s Many Inte-
grated Core (MIC) processors, GPUs from NVIDIA, Fusion
APUs from AMD and nodes from Convey and Tilera. Such
studies are providing useful feedback to computer architects,
application developers and algorithm researchers. Our ex-
perimentation is also wider than just hardware, including



Design New System
(2 year concept phase)

Synthesize SoC (hours)

Simulation/
ol = Cycle Time emulation
‘ = Cycle Time Build = | A
Tune El y Hardware Autotune [ J‘ 1-2days  DEm——
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Port Application
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Figure 3: Conventional design cycles last 4-6 years. With rapid synthesis tools to generate prototype designs,
FPGA-accelerated emulation and software auto-tuning, we hope to get the codesign cycle time down to 1-2

days.

evaluation of execution models such as ParalleX and low-
level activities such as direct measurement of energy use in
contexts such as the variation of network injection band-
width.

A fundamental hurdle to design space exploration is the scale
of modern scientific applications, which is a limiter for rapid
prototype assessment. Applications are typically millions of
lines of source and are written to use complex algorithms
and data structures. Whilst our eventual goal is to run ap-
plications on such large systems, the effort required to port
them is likely to be prohibitive if multiple platforms must
be assessed in short time frames. It is in this context that
the notion of a mini-application (or simply miniapp), i.e.,
application proxy, has been developed — a miniapp is a con-
densed implementation of one or multiple key performance
issues that affect parent codes, written to be amenable to re-
factoring or change but representative enough to be useful
in the scientific problem domain.

The ability to predict the performance, and more impor-
tantly the performance limitations, of hardware which does
not currently exist or is significantly different from contem-
porary systems is a key facet of design exploration. Since
many proposed exascale point designs are currently propri-
etary or encumbered with intellectual property, many of our
early evaluations are being conducted using the notion of an
Abstract Machine Model (or AMM) which defines the key
architectural building blocks but no specific detail. We then
are able to augment AMMs with details provided by per-
formance models, architectural simulators and information
obtained from our miniapps running on test-bed platforms
to inform us of performance trade offs and available design
decisions.

In order to convey confidence in our use of application prox-
ies, we have developed a validation methodology [2] for demon-
strating the applicability of miniapps to their parent codes
enabling HPC vendors and researchers to have a high de-
gree of confidence in results obtained from studies using
miniapps. This methodology is guided by the principles
developed for experimental validation [14], where the ap-
plication is analogous to the physical observation and the
miniapp is the experiment. A more detailed discussion on
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miniapps will be given in the next section. A similar effort
is being applied to hardware/software co-simulation tools,
and initial validation results of SST are encouraging.

A variety of advanced architecture testbeds are being used
to study performance issues of key algorithms. These stud-
ies are helping guide algorithms research and are providing
useful feedback to computer architects. For example, excel-
lent performance was obtained for a very challenging finite-
element miniapp on a Nvidia GPU. Register spilling was
identified as a key issue that must, in the future, be overcome
through architecture and system software enhancements, as
well as through algorithms research. (See Section V for more
detail on this example.)

Simulators like the SST, when combined with application
proxies, allow fast and efficient design space exploration.
This process can be used to make decisions such as which
memory technology and processor core is best suited to a
given problem. For example, one such experiment looked at
the impact of different memory technologies (DDR2, DDR3,
and GDDRS5), and processor core issue widths (1, 2, 4, 8
wide issue) on the power, performance, and cost of a sparse
linear system solver captured within the Mantevo HPCCG
miniapp as well as Lulesh', a proxy for a challenging shock
hydrodynamics code.

Network bandwidth degradation studies on supercomputers
are helping define network requirements for future systems.
These studies are also helping identify methods for improv-
ing application performance.

4. MINIAPPS: VEHICLES FOR CODESIGN

Applications programs for computational science and engi-
neering (CSE) designed to execute in HPC environments are
presently based on a distributed memory parallel comput-
ing model using the Message Passing Interface (MPI) for ex-
changing data between computational nodes. This general
approach has been highly successful for application areas
such as climate modeling, material science, computational
mechanics and many other areas. For more than 15 years

'https://computation.llnl.gov/casc/ShockHydro/



we have enjoyed a stable and improving execution environ-
ment where, from generation to generation, the number of
nodes and the performance of each core on a node increased
regularly and sufficiently to keep pace with computational
growth needs.

Presently this model has stagnated and even declined. Node
counts are not expected to increase dramatically and single
core (sequential) performance has in fact declined. The only
true path to increased performance at this time is to exploit
new trends in intra-node parallelism. However, most HPC
applications have no existing infrastructure to exploit this
parallelism, and no well-defined path to its realization.

To aid in the rapid exploration of this new design space, we
have developed a growing collection of “mini-applications”,
or miniapps. These are small stand-alone programs that
embody some key performance-impacting elements of the
large-scale applications of interests, such that we can rapidly
re-design and re-implement the miniapps and learn about
the performance, programmability and system design trade-
offs in a rapid and agile cycle. Unlike a benchmark, the
result of which is a metric to be ranked, the output of a
miniapp is a richer set of information, which must be inter-
preted within some, often subjective, context. We distin-
guish this from a compact-application whose purpose is to
replicate a complex domain-specific behavior being used in
a parent application. Miniapps are designed specifically to
capture some key performance issue in the full application
but to present it in a simplified setting which is amenable to
rapid modification and testing. This is also distinct from a
skeleton application, which is typically designed to focus on
inter-process communication often producing a “fake” com-
putation. Miniapps create a meaningful context in which to
explore the key performance issue, are developed and owned
by application code teams, are limited to O(1K ) source lines
of code, and are intended to be modified with the only con-
straint being the continued relevance to parent applications.

Miniapps distill from large-scale applications the most im-
portant design choices that must be made, and their refac-
tored versions serve as examples of how the large-scale ap-
plications can be rewritten [2]. From the Mantevo project
[7], for example, a finite-element miniapp, miniFE, tracked
the sensitivity to memory bandwidth of Charon, an elec-
tronics device simulation application [12]; molecular dynam-
ics miniapp illustrated the computation of a Lennard-Jones
force calculation in LAMMPS [15]; and a finite difference
miniapp illuminated an inter-process communication scaling
problem, seen only at very large scale, for a multi-material
Eulerian code [8]. Just as important, this methodology also
illustrates areas in which these miniapps did not adequately
represent the full application.

Furthermore, miniapps provide system designers with con-
crete examples of how applications are written, so that de-
sign choices can be informed in a very tangible way by ap-
plication needs. Finally, miniapps provide a concrete forum
for detailed and precise communication between develop-
ers of all components of the computing platform: applica-
tions, libraries, compilers, runtime, OS and hardware. Use
of miniapps has substantially increased the effectiveness of
the combined efforts of these teams.
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S. INDUSTRY EXPERIENCE IN CODESIGN

FOR HPC

In this section, we discuss as an example a recent success
in codesign. The example involves the exploration of imple-
mentation options for the code MiniFE from the Mantevo
suite. The codesign process for this example is limited to
node-level design with the focus on the interplay between
algorithm development and architecture exploitation. The
specific application shows sensitivity to memory bandwidth
but rather than just asking for bandwidth we sought out to
understand why it is sensitive to bandwidth and to explore
other options for improving performance.

We focused on key performance limiters in the matrix as-
sembly phase of the algorithm on an NVIDIA GPU using
the CUDA programming model. A straightforward CUDA
port was created that uses a single thread per element which
adds a local element contribution into a global matrix. The
computation of the element operator involves a number of
floating-point heavy operations including computing the ma-
trix determinant and the Jacobian. The large number of
floating point operations suggest that the performance should
be FLOP limited but analysis using NVIDIA’s compute pro-
filer has shown that the performance is in fact bandwidth
bound due to register spilling.

The cause of this register spilling was identified as the ele-
ment operator which requires a large thread state - 704 bytes
total for node-IDs, node coordinates, the diffusion matrix,
and the source vector, plus additional for temporary data
and pointers. The Fermi GPU architecture supports up to
63 32-byte registers per thread limiting the total register
storage to 252 bytes. As a result of this limit, any additional
state must be spilled to L1 and L2 caches but with 8192
simultaneous active threads, most of the spills are not con-
tained by these caches. Consequently, registers are spilled
to global memory causing the computation to become band-
width bound.

As an alternative design, we tuned the kernel to reduce
register usage, including algorithmic changes that exploit
symmetry in the diffusion operator and reorder computa-
tions so that data is loaded immediately prior to being used.
We have also applied several traditional optimization tech-
niques including pointer restriction, inlining of functions,
and unrolling of loops. Finally, we also position a portion
of the state in shared memory and experimented with L1
cache sizes. Whilst these optimization greatly reduce reg-
ister spilling, 512 bytes of state is still spilled per thread.
To ensure fair comparison, all optimizations that were ap-
plicable to the original CPU code were back ported also
improving the CPU performance.

The performance of the CUDA version of miniFE was com-
pared to the MPI-parallel version of miniFE, with both ver-
sions running on a Tesla M2090 and a hex-core Intel Xeon
2.7GHz E5-2680. We tested for various problem sizes of N
hexahedral elements. The speedup for each of the phases
of the miniFE is reported in Figure 4. The data show that
algorithm-architecture codesign provides different speedups
for different phases of the program, and a comprehensive
design space exploration is needed.



GPU vs. CPU Speedup
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H Assembly
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GPU: M2090
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E5-2680@2.7 Ghz
(8 cores)

Figure 4: Speedup of CUDA version of miniFE over the MPI-parallel version of miniFE. Both implementations
are run on a system consisting of a Tesla M2090 and a hex-core Intel Xeon 2.7GHz E5-2680.

Future generations of NVIDIA GPUs are expected to ad-
dress some of the findings from the above example study,
including an increased number of registers per thread and
increases in the size of L1 and L2 memories. Improvements
in the CUDA compiler may also lead to a reduction in the
number of register spills or the impact that register spills will
have on execution time. Nonetheless, the application im-
provements are still likely to be beneficial. We expect that
these investigations will also feed forward into subsequent
GPU design cycles, thus completing the codesign feedback
loop.

6. SUMMARY

The accelerated push to exascale, driven by mission require-
ments spanning a breadth of areas, has compelled the de-
velopment of a new means to develop HPC environments
for application scientists and engineers. The codesign ap-
proach, inspired by the embedded system design commu-
nity, is providing the HPC community with an opportunity
to strengthen its collaborative interactions internally and
externally.

In this paper we have described various challenges and op-
portunities throughout the HPC codesign space, and have
discussed the development effort for enabling this codesign
practice. We believe that there are many new research prob-
lems to be addressed in this area and that the expertise of
EDA researchers can be valuable to tackle these problems.
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