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Abstract— Cray began delivery of their next generation XC30 
supercomputer systems in late 2012. One of the first systems, 
“Edison,” was delivered to NERSC and in this paper we present 
preliminary performance results obtained on this machine. The 
primary new feature of the XC30 architecture is the Cray 
“Aries” interconnect that includes a 48-port high radix router 
with a dragonfly topology. To demonstrate the Aries’ substantial 
improvements in bandwidth, latency, message rate, and 
scalability, we present measurements of the basic performance 
characteristics of the system and examine the scalability of 
several network-centric “microbenchmarks.” Although some 
low-level microbenchmark results for Aries have been published 
previously (using prototype hardware), the unique contribution 
of this work consists of performance results for the NERSC 
Sustained System Performance (SSP) application benchmarks. 
The SSP benchmarks span a wide range of science domains, 
algorithms and implementation choices, and provide a more 
holistic performance metric.  We examine the performance and 
scalability of these benchmarks on the XC30 and compare 
performance with other state-of-the-art HPC platforms. Edison 
nodes are composed of two eight-core Intel "Sandy Bridge" 
processors, which provide single-node performance to 
complement the networking improvements afforded by the Aries 
interconnect.  Counting two hyperthreads per core, Edison has 
32 hardware threads per node; thus, multi-threading is essential 
for obtaining optimal performance. We report the OpenMP, 
core-specialization and hyperthreading settings that maximize 
SSP on the XC30. 

Keywords—XC30; Aries; hyperthreading; core specialization; 
sustained system performance 

I. INTRODUCTION 
 Twenty years ago, Cray launched its first massively 

parallel supercomputer architecture, the T3D [1].  Both that 
system and its immediate follow-on, the T3E [2], used what 
became a common industry approach to building scalable 
multiprocessor platforms, using commodity microprocessor 
nodes surrounded by custom integrated interprocessor network 
technology.   

Recently Cray has unveiled its latest distributed memory 
architecture, a system developed as part of Cray's DARPA 

High Productivity Computing System program.  This 
architecture, known internally as the Cray Cascade system and 
by the product name Cray XC30, includes Cray's newest 
interconnect, Aries, which includes new technologies such as a 
dragonfly topology and adaptive routing.                     

The National Energy Research Scientific Computing 
(NERSC) Center has recently installed the first phase of an 
XC30 system which will achieve about 2-PF theoretical peak 
performance after its second phase upgrade is installed in late 
2013. The first phase system is the subject of this report. The 
system has been bestowed with the name Edison, in honor of 
the American inventor Thomas Alva Edison.  

In addition to characterizing Edison’s interconnect 
performance, we are particularly interested in two system 
features: hyperthreading (HT) and core specialization (CS).  
HT is a feature of the Intel Xeon processor family that allows 
multiple threads to be executed on a single hardware core. 
Additional threads share the architectural state of the master 
thread but not its instruction stream. One of the primary 
benefits of HT is to keep the execution unit pipeline filled in 
case the currently executing thread stalls. These stalls may 
occur as a result of a cache miss or a branch misprediction, for 
example. In the case of highly optimized code that avoids these 
effects, the advantages of HT may be minimal. HT may also 
permit the simultaneous use of the different execution ports for 
floating-point and integer calculations [9]. 

Core Specialization [3] is a feature of the Cray operating 
system that allows the user to reserve one (or more) cores per 
node for handling system services and thus reduce the effects 
of OS jitter, at the expense of possibly requiring more nodes to 
run an application for a given number of compute tasks. These 
cores may also be used in conjunction with Cray's MPI 
Asynchronous Progress Engine [3] to improve the overlap of 
communication and computation if non-blocking 
communications are used by an application. In the absence of 
CS, the compute cores themselves must service their own non-
blocking MPI requests. 

Hyper-threading complicates questions about the most 
effective use of processor resources. HT doubles the number of 
streams that can schedule computation, but does not increase 
other resources (e.g., floating-point units or cache). A key 
question for users is whether these ‘virtual cores’ are best used 
by allocating additional MPI processes to the nodes, by using 
multiple threads per MPI task, or by devoting some to the 
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operating system and others to the MPI progress engine via CS. 
We address this question by comparing the performance of 
several scientific applications analyzing the effects of HT and 
CS features on their performance.  We provide an estimate of 
aggregate application performance for the three scenarios and 
also compare with other HPC platforms. 

II. COMPUTATIONAL SYSTEMS 

A. Edison 
This paper focuses on the performance characteristics of 

the Edison Cray XC30 system at NERSC. The initial phase of 
the system was delivered in Q4 2012 with full configuration 
and user availability expected in Q2 2013. In its current 
configuration, Edison has 664 compute nodes. The current 
phase-1 system is comprised of four cabinets, each containing 
42 blades. Each blade is comprised of four dual-socket nodes, 
each containing two 8-core 2.6-GHz Intel Sandy Bridge 
processors and 64 GB of 1,866-MHz DDR3 memory 
(nominally 4 GB/core). Each of the two dies on a node is 
connected to each other and to their own memory via Intel's 
QPI interface, resulting in potential NUMA penalties for 
crossing the NUMA domains. Using the new AVX SIMD 
hardware, each compute core is capable of eight double-
precision floating-point operations per cycle, yielding a 
theoretical performance of 332.8 Gflops/node.  

The Cray XC30 system also incorporates the new Aries 
interconnect, which, in addition to its its raw bandwidth 
performance,  is distinguished by a novel flattened dragonfly 
topology and its adaptive routing capabilities. The four nodes 
on an XC30 blade share a 48-port Aries router chip, which 
controls traffic between the rank-1, rank-2 and rank-3 
networks. The rank-1 network handles traffic within a 16-blade 
chassis (up to 64 nodes); the rank-2 network handles traffic 
between all chassis in a two-cabinet 'group' (up to 384 nodes); 
and the rank-3 network handles all traffic between all groups. 
There are only two groups in the Edison phase-1 system.  The 
rank-1 and rank-2 networks are connected through the 
backplane (rank-1) or via inexpensive copper wires (rank-2) 
and are capable of 14 Gbps transfer rates. The rank-3 network 
is connected via more expensive optical cables and is capable 
of transfer rates of up to 12.5 Gbps. The adaptive routing 
capabilities of the interconnect become significant only when 
messages traverse the rank-3 network. If the adaptive network 
determines that its initial routing between groups is congested, 
it will select a different less congested route, thus making use 
of the full capabilities of the system and reducing network 
contention. For more details see [5]. 

B. Hopper 
For comparison purposes, some tests are also performed on 

Hopper, which is a Cray XE6 system and has been described 
previously [4]. Hopper has 6,384 compute nodes connected by 
a Cray Gemini interconnect. Within a Hopper node, there are 
two 2.1-GHz, 12-core AMD Magny-Cours processors, and 32 
GB of 1,330-MHz RAM. The Magny-Cours processor is itself 
made up of two multi-chip modules; thus, there are four 8-GB 
NUMA domains connected by HyperTransport.  Pairs of nodes 
are connected by HyperTransport to a Gemini network chip, 

that represents one point on a 3D torus network capable of 
transferring 3–6 GB/s per direction; see [13] for details. 

III. NETWORK PERFORMANCE 
The distinctive feature of the Cray Cascade architecture is 

the Aries network ASIC and the interconnection network based 
upon it. Aries has been described in great detail previously [5]. 
In this section, we use several network microbenchmarks to 
assess Aries’ performance, reproducing measurements from the 
prototype system in [5] and confirm results from earlier 
simulations. We use the OSU MPI benchmark suite [7]. For 
point-to-point measurements, we ensure that sending and 
receiving pairs are attached to different Aries ASICs. 

Fig. 1 shows the measured Edison inter-processor MPI “ping-
pong” message latency as a function of message size,  
measured by the OSU MPI multi-pair latency benchmark [7]. 
Although not shown, the values do not appear to vary 
appreciably as a function of the location of the pair of 
communicating nodes within the Edison interconnect topology; 
the 8-byte latency remains at a value of about 1.5 µs for both 
the nearest and furthest nodes in the network.  This value may 
be compared with approximately 1.8 µs for the (busy) XE6 
Hopper system.  Note that when a single pair of cores (on two 
nodes) are communicating, the Edison MPI latency is only 
slightly larger than that reported for the prototype system 
in [5]. Fig. 1 also shows that the latency increases when  more 
pairs of cores are communicating; the 8-byte value is about 
2.4 µs when all cores in both nodes are active. This value is 
considerably smaller than that observed when all (24) cores are 
communicating on the Hopper system (4.2 µs). 

Fig. 2 shows the MPI “ping-pong” message bandwidth as a 
function of message size.  The asymptotic values observed on 
Edison, i.e., 10 GB/s for unidirectional and about 15 GB/s for 
bidirectional, agree with the point-to-point “put” bandwidths 
reported in [5]. 

The Aries interconnect provides substantially more global 
bandwidth than Gemini, thus providing more scalable 
performance for nonlocal communication patterns. We 
measure runtimes for MPI_Alltoall calls using the OSU 
benchmark and one MPI process per node.  Fig. 3 shows the 
all-to-all injection bandwidth per node 
(InjectionBandwitdhPerNode = MessageSize x (Nodes-1) / 
AlltoallTime) for several message sizes and concurrencies. 
Unlike the all-to-all data in [5], these data are measured (not 
simulated) on a busy systems.  Edison’s all-to-all performance 
is remarkably better than Hopper’s, achieving up to three times 
more injection bandwidth per node for 1-MB messages. 
Furthermore, that this rate is nearly constant up to 256 nodes 
indicates that Aries’ high global bandwidth within a group 
provides excellent all-to-all scalability. Above 384 nodes, the 
benchmark must span multiple two-cabinet groups and is 
forced to use the slower rank-3 network link, which explains  



 

Fig. 1. MPI multi-pair latency on Edison.  

 

Fig. 2. MPI ping-pong bandwidth 

 

Fig. 3. Alltoall injection bandwidth per node.  

the drop in injection bandwidth observed for 512 nodes. The 
dragonfly’s rank-3 network has an all-to-all topology, so the 3 
GB/s injection bandwidth per node should be maintained as 
the system expands to more groups. 

Core Specialization (CS) reserves one (or more) cores per 
node for the operating system. When the MPI asynchronous 
progress feature is enabled, nonblocking MPI functions can be 
offloaded to the specialized core. As noted in [10], the Gemini 
interconnect has no special hardware to facilitate MPI 
handshake protocols and many CPU cycles can be consumed 
processing MPI requests. CS has the potential to process these 

requests independent of the user’s process and enable better 
overlap between communication and computation.  

To assess the CS and asynchronous progress features, we 
measure the fraction of computational work that can be 
overlapped with communication, as described in [10]. Fig. 4 
shows the overlap-fraction with and without CS. For messages 
smaller than 8 KB, overlap-fractions of 50% are achieved with 
and without CS. When only one pair communicates, CS 
dramatically decreases overlap at the 8-KB threshold, where  
Aries switches between the Fast Memory Access (FMA) and 
Block Transfer Engine (BTE) mechanisms, and begins to use 
the progress engine. CS gradually becomes more useful as the 
message size increases, and is essential for obtaining overlap 
for 2-MB messages. However, with 16 pairs, 85% overlap can 
be observed for large messages without CS, and up to 98% 
overlap is possible with CS.   

The overlap fraction is a measure of a relative speedup 
between blocking and non-blocking versions of a 
communication-computation loop. It is also informative to 
compare the change in runtime for the non-blocking loop with 
and without CS, as shown in Fig. 5. For one or 16 pairs, CS 
improves runtimes only for messages larger than about 1MB. 
For 512 pairs, CS has a significant negative impact. 

 

 

Fig. 4. Overlap fraction measured on Edison. The computation to 
communication ratio is 1.0 for all message sizes. 

 

 

Fig. 5. Speedup due to CS.  



IV. APPLICATION BENCHMARKS 
As the primary computing center for the U.S. DOE Office 

of Science, the NERSC Center serves approximately 5,000 
users working on some 700 projects that involve nearly 700 
codes for a wide variety of scientific disciplines.   The 
application benchmarks used here have been selected from the 
NERSC workload to survey a range of algorithms and domains 
[8]. This section describes each of the benchmark codes and 
covers the effects of HT and CS on their performance. 

A. Code Descriptions 
1) CAM 
Climate simulations comprise a significant part of the 

NERSC workload. Much of this work is performed using the 
Community Earth System Model (CESM) developed by the 
National Center for Atmospheric Research (NCAR). Within 
CESM, the atmosphere model, CAM, represents a dominant 
fraction of the total model computational burden. Because of 
this, CAM has been an important component of the NERSC 
benchmark suite for many years. Within CAM, the main 
computational burdens are the dynamical core (which solves 
the equations of fluid motion in the atmosphere) and the 
physical core (which implements a number of sub-scale grid 
processes that affect the dynamics, such as long- and short-
wave radiative transfer, precipitation, turbulent mixing, etc.).  
The three-dimensional computational grid of CAM represents 
variables described by latitude, longitude, and vertical height. 
There are several dynamical cores available for CAM, each 
using different methods to solve the same basic set of 
equations. In this study, we use the finite volume (FV) 
dynamical core. The FV core decomposes the grid in two 
different ways: by latitude-longitude coordinates and by 
latitude-vertical coordinates. In the physical core, which is 
common to all dynamical cores, the MPI decomposition 
follows the latitude-longitude decomposition of the dynamical 
core. In general, interprocessor communications are dominated 
by non-blocking sends and blocking receives, though the code 
may be configured at run time to use different protocols. The 
OpenMP implementation in the FV core is, in general, over 
latitude or levels. The OpenMP implementation in the physical 
core is different. All of the vertical cells at a particular latitude-
longitude point are referred to as a column. A 'chunk' is a 
collection of columns and the physical core uses this chunking 
strategy as a means of implementing a second level of 
parallelism via OpenMP. 

The benchmark used in this paper is the D resolution 
(nominally 0.5 degrees) which translates to a 576 x 361 x 28 
grid. The benchmark uses 240 MPI tasks with a 60x4 MPI 
decomposition and either one or two OpenMP threads and runs 
for five simulated days. 

2) GAMESS 
The General Atomic and Molecular Electronic Structure 

System (GAMESS) is capable of a wide variety ab-initio, 
density-functional and semiempirical quantum chemistry 
calculations. Within GAMESS, molecular orbitals are 
represented as linear combinations of Gaussian basis functions. 
A large fraction of its calculations consist of linear transforms 

between the Gaussian and molecular orbital basis sets, which 
are characterized by stride-1 memory access.  

GAMESS provides its own communication library, the 
Distributed Data Interface (DDI), which allows each process to 
access a global pool of memory. The DDI version used on 
Edison is implemented with MPI. Within a NUMA-node, DDI  
uses SHMEM, and one MPI task manages off-node 
communication for the remaining compute tasks. GAMESS 
communication pattern emphasizes collective functions. 

The GAMESS benchmark performs a Hartree-Fock + MP2 
energy and gradient calculation for a 43-atom molecule with 
306 electrons and 1025 basis functions.  

3) GTC 
The Gyrokinetic Toroidal Code (GTC) simulates turbulent 

transport in magnetically confined plasmas by solving the 
gyro-averaged 3-D Vlassov equations describing the motion of 
particles in a self-consistent electromagnetic field. The 
electromagnetic field is determined by the Particle-In-Cell 
(PIC) method using a grid that that follows the curved field 
lines of the confining toroidal potential. A non-spectal solver is 
used to evaluate Poisson's equation on the grid. The parallel 
decomposition divides the spatial domain into 1-D segments 
along the toroidal dimension, and additional parallelism is 
achieved using a particle decomposition within the toroidal 
domains.  

The GTC benchmark simulates 6.6x109 particles in 2.1x106 
cells for 248 timesteps. The 2048 MPI processes partition 64 
toroidal domains and with a 32-way particle decomposition. At 
this concurrency, three phases of the calculation dominate the 
GTC walltime. Deposition of the particles' charge onto the grid 
is both computationally demanding and, due to it's use of 
indirect addressing, a challenge for random access memory 
latency. The 'push' phase updates the position and momentum 
of each particle (based on the grid's field data). The 'shift' phase 
arises when particles move between toroidal domains and is 
characterized by bandwidth-limited nearest-neighbor 
communication.  

4) IMPACT-T 
IMPACT-T represents NERSC’s accelerator physics 

workload. It simulates the relativistic motion of a beam of 
charged particles as they travel through the electromagnetic 
field generated by the accelerator structure. Coulomb forces 
among the particles are evaluated using a Particle-In-Cell 
algorithm. While there are fundamental similarities between 
the PIC algorithms used in GTC and IMPACT-T, there are two 
main reasons why these codes exercise the system differently. 
The external fields in the accelerator intentionally manipulate 
the particles into a nonuniform phase-space distribution, which 
manifests in simulations as a nontrivial load balance problem 
that is not present in GTC. Second, IMPACT-T uses an FFT-
based algorithm to evaluate the particles’ electric field, making 
it sensitive to MPI collective performance. The IMPACT-T 
benchmark uses 1024 MPI processes to simulate 400 million 
particles on a 128 x 256 x 256 grid for 200 timesteps. 

5) MILC 
The MILC code is used to study quantum 

chromodynamics, which is the theory of strong interactions 



between quarks and gluons which comprise hadrons (e.g., 
protons, neutrons, etc.). The code uses lattice gauge methods to 
implement the SU(3) Yang-Mills theory on a four-dimensional 
grid (three spatial coordinates and a single time coordinate). 
The variables stored on the sites and links are updated using 
the result of a large, sparse, near-singular system of linear 
equations. A Conjugate Gradient (CG) algorithm is used for 
the linear solve, and as a result of this iterative scheme, MILC 
performs many complex-valued matrix-vector operations and 
is sensitive to memory bandwidth [11]. MILC is parallelized 
using a 4-D domain decomposition designed to minimize the 
surface-to-volume ratio of the subdomains. The MPI 
communication pattern is a 4-D halo exchange implemented 
with nonblocking sends and receives, and results in messages 
between widely separated nodes on network topologies that do 
not map well to the 4-D decomposition. Additional MPI traffic 
is involved due to the all-reduce collectives required by the CG 
solver. Additional OpenMP parallelism was implemented by 
the authors following previous guidance by Gottlieb and 
Tamhankar (2001). In general, the OpenMP directives are 
aimed at exploiting parallelism inherent in loops over the 
number of 'sites' in the local lattice of an MPI task (a site is a 
data structure containing all variables at a point in the lattice). 

The benchmark used in this paper is the 'extra large' MILC 
problem from previous NERSC benchmark suites, with a total 
lattice size of 643x144 (x,y,z,time), four trajectories, 15 steps 
per trajectory, and a timestep of 0.02. The benchmark uses 
8,192 MPI tasks yielding an 83x9 local lattice and either one or 
two OpenMP threads. 

6) MAESTRO 
MAESTRO simulates low Mach number astrophysical 

flows such as, in this benchmark, convection within a white 
dwarf as it evolves toward a Type 1a supernova explosion. 
MAESTRO uses the BoxLib adaptive mesh refinement 
library [12] to integrate the relevant PDEs on a hierarchical 
patchwork of non-overlapping grids of different sizes and 
resolutions. A coarse-grained 3-D domain decomposition 
balances both the computation and communication loads 
among processors. MAESTRO’s communication pattern is 
irregular, with a broad range of message sizes. MAESTRO has 
low computational intensity, making it sensitive to memory 
performance, especially latency. The MAESTRO benchmark 
problem propagates a fixed-size, block-structured 10243 grid 
(bypassing MAESTROs AMR capability) for ten timesteps, 
using 2048 MPI tasks. 

7) PARATEC and MiniDFT 
PARATEC and MiniDFT are plane-wave density 

functional theory codes for modeling materials. Given a set of 
atomic coordinates and pseudopotentials, they compute self-
consistent solutions of the Kohn-Sham equations. For each 
iteration of the self-consistent field cycle, the Fock matrix is 
constructed and then diagonalized. To build the Fock matrix, 
fast Fourier transforms are used to transform orbitals from the 
plane wave basis (where the kinetic energy is most readily 
evaluated) to real space (where the potential is evaluated) and 
back. A CG (PARATEC) or Davidson diagonalization 
(MiniDFT) algorithm is used to compute the orbital energies 
and update the orbital coefficients. 

PARATEC has been a component of past NERSC 
benchmark suites, which permits comparison between current 
and historical computational systems. More recently, the 
Quantum ESPRESSO (QE) package has surpassed PARATEC 
in popularity at NERSC. QE also implements ‘task-group’ 
parallelism for computing FFTs of multiple bands 
simultaneously, extending its potential to use higher levels of 
concurrency anticipated in future computational systems. 
MiniDFT is a minimal DFT code or “mini-app”, developed by 
extracting essential routines from the full-featured QE code. 
Hybrid parallelism is implemented in MiniDFT using OpenMP 
and threaded BLAS and FFT libraries. 

The PARATEC benchmark calculation requires 1,024 MPI 
processes and performs a single point SCF and force 
calculation for a 7 x 7 x 7 supercell  of silicon with a plane-
wave cutoff energy of 25 Ry. The MiniDFT benchmark 
requires 10,000 MPI processes and performs one iteration of 
the SCF cycle for a 10 x 10 x 10 supercell of magnesium oxide 
with a plane wave cutoff energy of 130 Ry. 

B. Application Performance Experiments 
 We consider five possible use cases for HT and compare 
their utility for the application benchmarks described above. In 
the baseline scenario, 16 MPI tasks are assigned to each node, 
one for each physical core. The second case investigates the 
simplest approach to using HT - 32 MPI tasks are assigned to 
each node, one for each virtual core. (Two per physical core.) 
For a fixed total number of MPI tasks, this use of HT uses half 
as many nodes, thus decreasing the charge to users, since 
NERSC allocations are charged on a per-node basis. The 
runtime will typically increase in this case, but if it increases by 
less than a factor of two, then this scenario will be a net win. 
This perfomance increase can usually be attributed to some 
combination of  HT’s latency-hiding effects or reducing the 
amount of off-node communication. The third use case 
combines HT and CS; 31 MPI tasks are assigned to each node, 
and the remaining virtual core is reserved for OS functions. To 
accommodate the MPI tasks that were displaced by CS, 
slightly more nodes are required than the simple MPI+HT case. 

For the four benchmark applications that include OpenMP 
directives (CAM, GTC, MILC and MiniDFT), we also perform 
hybrid MPI+OpenMP calculations with 16 tasks per node and 
use HT by assigning two OpenMP threads per MPI task.  
Contrasting these results to those of the MPI+HT test may 
clarify whether performance enhancements associated with HT 
(if any) are due to on-node latency-hiding or changes to the 
communication topology. The fifth use case combines the 
hybrid applications with HT and CS.  Each node hosts 15 MPI 
tasks with two threads apiece, and one core is set aside for CS. 
TABLE I. lists the aprun options used to launch the executable 
in each experiment. For experiments using CS, the following 
environment variables were used to enable the MPI Progress 
Engine: MPICH_NEMESIS_ASYNC_PROGRESS=1, 
MPICH_MAX_THREAD_SAFTETY=multiple.  

 

 



TABLE I.  APPLICATION BENCHMARKING EXPERIMENTS. 

Experiment aprun options 
MPI-Only -N16 
MPI+HT -N32 -j2 
MPI+HT+CS -N31 -r1 -j2 
Hybrid+HT -N16 -d2 -j2 -cc numa_node 
Hybrid+HT+CS -N15 -r1 -d2 -j2 -cc numa_node 
 

The Intel compiler and MKL libraries are the default 
programming environment and were used to compile all 
applications except PARATEC, for which the Cray compiler 
and Libsci libraries were used.  

C. Application performance results 
Results of the application benchmark experiments are listed 

in TABLE II. HT enables runs with twice as many processes 
per node, but the added competition for CPU resources roughly 
doubles their runtimes. If HT offers performance advantages, 
then the runtime will increase by less than a factor of two. 
Conversely, CS may decrease runtimes, but at the cost of slight 
increases in the number of nodes required. To account for a 
large range of absolute performance and resource allocations, 
we use performance per node (i.e., FlopCount / Runtime / 
NodeCount ) as the basis for comparing multi-core use modes. 

 Fig. 6 shows the performance per node for each 
application code, relative to the MPI-Only performance. The 
MPI+HT columns (red) are typically greater than one 
indicating that HT improves performance per node for all 
applications except MAESTRO and MILC, and minimally for 
GAMESS.  The Hybrid+HT mode outperforms the MPI+HT 
mode for MILC, but is worse for all other codes. CS (green and 
blue) impedes performance of all codes. The remainder of this 
section analyzes the performance of individual codes in more 
detail. 

1) CAM 
The CAM benchmark reports the time spent in the 'stepon' 

region, which is CAM’s main time-stepping section over the 
dynamical and physical cores. Communication in this 
benchmark is dominated by vector gather/scatters in both the 
physics and dynamics and waits associated with the point-to-
point communications in the dynamics. Besides the waits, non-
blocking communications contribute very little to the overall 
run time. HT significantly increases the runtime, but uses half 
as many nodes, resulting in a 20% net increase in performance 
per node. This improvement is likely due to HT taking 
advantage of instruction stream stalls. The total amount of time 
spent in MPI communications also very nearly doubles 
indicating there is little overlap in communication and 
computation that the second thread can exploit. Indeed, the 
increase in communication is largely dominated by the waitalls 
associated with point-to-point communications. When CS is 
added, the overall stepon time increases again, largely due to 
increases in MPI communications time. In this case, even non-
blocking communication time increased so the overall increase 
in communication time may result from more communications 
having to go off-node (to processes that were displaced by CS) 
even though there is less contention for the network on node. 

 

TABLE II.  BENCHMARK RESULTS  

Code Runtime (s) 
MPI MPI+HT MPI+HT+CS Hybrid+HT Hybrid+HT+CS 

CAM 156 259 270 147 168 

GAMESS 487 963 >1800 N/A N/A 

GTC 515 833 829 665 687 

IMPACT-T 280 483 491 N/A N/A 

MAESTRO 885 1540a 1700a N/A N/A 

MILC 544 1168 1129 538 >7200 

PARATEC 201 356 353 N/A N/A 

Mini-DFT 325 575 594 348 N/A 
a. MAESTRO results with HT use 24 processes. See text. 

 

 

Fig. 6. Application performance per node, relative to MPI-Only case. Values 
greater than 1.0 indicate that HT increases in application throughput. 

The Hybrid+HT case is interesting in that runs in nearly the 
same time (slightly less) as the MPI only case, indicating that, 
while each thread has one-half the work of an MPI-only task, 
each thread is sharing the total number of cycles approximately 
equally. These two effects balance each other so that the run 
time is very close to that of the MPI-only case. Profiling with 
IPM reveals that, while the run time decreased slightly relative 
to the MPI only case, the total amount of MPI time hardly 
changed, in agreement with the fact that no MPI calls occur 
within OpenMP regions, so threading has no impact on the 
number of MPI calls or the volume of data transferred by MPI. 
When we add CS (Hybrid+HT+CS), we note that the run time 
increases, as did adding CS to the MPI+HT case, even though 
the overall amount of time spent in MPI routines increases, 
possibly for the same reasons. 

2) GAMESS 
HT has no significant impact on GAMESS performance. 

The majority of the GAMESS benchmark time is spent 
transforming and contracting 4-index arrays- operations that 
can be implemented with BLAS routines that do not benefit 
from HT. The computational intensity of the transformations is 
high, and the DDI data-servers ensure good overlap between 
communication and computation, so doubling the 
communication volume per node via HT does not influence 
GAMESS performance. The GAMESS calculations using 



DDI+HT+CS took more than twice as long as DDI+HT and 
did not complete within the allocated runtime. This is difficult 
to explain; it is possible that this DDI data-server 
implementation is not compatible with the MPI asynchronous 
progress feature. 

3) GTC 
GTC exhibits a 23% increase in performance per node 

when switching from MPI-only to MPI+HT, with 13% coming 
from HT’s latency hiding effects (during the charge deposition 
and interpolation phases of the PIC algorithm), and 10% from 
the increased locality of the MPI_Allreduce functions. (With 
HT, all 32 particle domains within a toroidal domain are on the 
same node.) The Hybrid+HT run is 15% slower than the MPI-
only run, suggesting that HT does not compensate for OpenMP 
thread synchronization.  This underscores the observation that 
a large fraction of the MPI+HT performance improvement is 
due to reduced MPI communication volume and improved 
topology. 

4) IMPACT-T 
IMPACT-T’s performance per node increases by 15% 

when HT is enabled. Roughly half of this improvement is due 
directly to recouping processor resources that are underutilized 
when running without HT. Interpolation of the electric field 
from the grid to the particles requires many random memory 
accesses, and HT can take advantage of these interruptions to 
the instruction stream.  The other half of IMPACT-T’s 
performance improvement is due to MPI_Allreduce and 
MPI_Barrier functions, which (for IMPACT-T) do not increase 
when HT is used. IMPACT-T spends very little time in non-
blocking MPI functions, so CS has little potential to improve 
its absolute performance and decreases its performance per 
node. 

5) MAESTRO 
MAESTRO jobs that used more than 24 MPI processes per 

node consistently fail. (We are continuing to investigate and 
address these errors.) In TABLE II. and Fig. 6, the MPI+HT 
and MPI+HT+CS results are for 24 processes per node. This 
limitation makes MAESTRO’s performance per node node 
anomalously low because one quarter of the node’s CPU 
resources are not used. 

To better understand MAESTRO’s performance with 
respect to HT, we ran with 16 processes per node and pinned 
all processes to cores on the first socket. The benchmark time 
for the single-socket HT run was 1482.1 s, which corresponds 
to a 19% increase in performance per socket used (but leaves 
half of the allocated sockets unused). The network bandwidth, 
data volume and topology are the same as the MPI-only case, 
so this improvement is due entirely to HT’s latency hiding 
effects, which is not surprising in light of MAESTRO’s 
irregular memory access pattern. 

6) MILC 
The reported benchmark times for MILC are for the main 

computational section and exclude any initialization or I/O 
overhead. Communication in MILC is dominated by the 
MPI_Allreduce required by its conjugate gradient solver and 
waits associated with non-blocking communications. The 
actual non-blocking calls (Isend/Irecv) take little time in 

comparison. Furthermore, all of the MPI calls are serialized on 
the master thread with no MPI communications occurring in 
OpenMP regions. Adding HT to the MPI-only case more than 
doubles the run time. Examining the ‘compute time’ (run time 
– MPI time ), we note that the compute time of the MPI+HT 
case more than doubles, strongly implying that there is 
contention for memory resources between the two tasks. 
Adding CS slightly decreases the run time; however, while the 
MPI time relative to the MPI+HT runs goes up, the 'compute 
time' goes down relative to the the MPI+HT case. This result 
may be a combination of MPI wait and collective times 
increasing due to the greater off node communication and 
compute times decreasing because CS is handling more system 
services (e.g. I/O) on node. 

As with CAM, when running with two OpenMP threads 
per MPI task (where each thread has half the work of an MPI-
only task) the run time is nearly the same as the MPI only run 
as each thread's instruction stream is nearly perfectly 
interleaved. The amount of time spent in MPI calls is also 
nearly the same since only one OpenMP thread is handling 
MPI traffic. Adding CS presents an interesting problem as the 
run did not finish after two hours, which was more than 
sufficient time to complete based on previous runs and 
experience. Indeed, similar runs (384 and 1536 MPI tasks) on 
smaller models completed in the expected time. 

7) PARATEC 
HT improves PARATEC’s performance per node by 13%. 

Closer examination of the profiling data collected with IPM 
shows that when the MPI time is excluded, HT decreases 
performance per node by 3%. This is expected because 
PARATEC’s computation phases are dominated by extremely 
efficient BLAS and FFT kernels. The MPI_Allreduce function 
accounts for the largest fraction of PARATEC’s MPI time, and 
increases by only 12% when HT is enabled. This is consistent 
with a prefix-sum reduction that sends the same volume of data 
off-node (or off-blade) regardless of the number of ranks per 
node. 

CS provides very little improvement for PARATEC’s 
absolute performance and decreases its performance per node. 
It is not surprising that PARATEC does not benefit from CS; 
PARATEC uses non-blocking MPI calls only for the parallel 
transpose phase of the 3D-FFTs, and very little computation is 
available to overlap with communication. 

8) MiniDFT 
For MiniDFT, the MPI+HT runs have 13% higher 

performance per node than MPI-only. This improvement is due 
to a decrease in the fraction of time spent in MPI_Barrier calls. 
MiniDFT uses only half of the available cores during the 
diagonalization phase of the SCF cycle- the others wait in an 
MPI_Barrier, creating a significant load imbalance. HT 
provides a performance benefit during this because the 
diagonalization processes can monopolize more processor 
resources on cores that are shared with waiting processes. 
Comparison of the MPI and Hybrid+HT times also indicates 
that MPI behavior is responsible for the improved performance 
of the MPI+HT run. MiniDFT does not use non-blocking 
communication functions and does not benefit from CS. The 



Hybrid+HT+CS run was not attempted because it requires 
more nodes than are available on the current Edison system. 

V. CROSS-PLATFORM PERFORMANCE COMPARISON 
The “NERSC-6” SSP suite consists of all the codes in the 

preceding sections excluding MiniDFT. To compare the XC30 
and XE6 architectures we show, in Fig. 7, the performance per 
core for the SSP benchmarks using the MPI-only settings from 
TABLE I.  Edison improves upon Hopper’s performance per 
core by 1.7 – 3.0x. MILC’s improvement is somewhat less 
dramatic than other codes, which is due in part to its high 
concurrency, which forces use of the rank-3 network that has 
significantly lower bandwidth than the intra-group networks. 
MILC may also have lower performance gains because Edison 
has fewer cores per node than Hopper, so a larger fraction of 
the MPI calls used for its 4-D halo exchange require off-node 
communication. Fig. 7 also shows the relative change in 
performance per node for the MPI-Only case, which may be a 
fairer basis for comparing the systems because electrical power 
per node is the same on both systems. For the “optimized” 
performance per node, we select the best performing HT and 
CS use mode for each code. Core for core, Edison is 2.2x faster 
than Hopper (based on geometric mean on SSP benchmarks). 
On a node-for-node basis, Edison is 1.4x faster, and offers 1.6x 
greater throughput if HT is  used. 

VI. CONCLUSION 
We have evaluated the performance of Edison, the first 

phase of the Cray XC30 system being installed at NERSC. Our 
measurements of the point-to-point latency (1.5µs)  and bi-
directional bandwidth (15GB/s) for the Aries interconnect 
match earlier reports from a prototype system, and constitute 
significant improvements over the Cray XE6. Dramatic 
increases in global bandwidth are reflected in the performance 
and scalability of all-to-all communication benchmarks. We 
have measured the effects of HT and CS on  the performance 
of a suite of benchmark applications. HT increases 
performance for six of the eight codes studied, and CS hurts 
performance for all but one code. Based on the NERSC-6 SSP 
benchmarks, Edison 2.2x faster per core than Hopper, and 1.4x 
faster per node. Selective use of HT increases Edison’s 
performance per node to 1.6x that of Hopper. 

 

 

 

 

Fig. 7. Relative performance for SSP benchmarks on Edison and Hopper. 
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