OpenMP

Programming OpenMP

Christian Terboven
Michael Klemm

1 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Agenda (in total 7 Sessions)

B Session 1: OpenMP Introduction
- Welcome
- OpenMP Overview
—> Parallel Region
- Worksharing
- Scoping
—> Tasking (short introduction)
— Executing OpenMP programs
—~>Homework assignments ©
- Compile and run on Perlmutter CPUs

B Session 2: Tasking
B Session 3: Optimization for NUMA and SIMD
B Session 4: What Could Possibly Go Wrong Using OpenMP
B Session 5: Introduction to Offloading with OpenMP
B Session 6: Advanced OpenMP Offloading Topics
‘ Sgssion 7: Selected / Remaining Topics

Members of the OpenMP Language Committee

Programming OpenMP

An Overview Of OpenMP

Christian Terboven RWTH

Michael Klemm OpenMP

OpenMP Tutorial

OpenMP

OpenMP

History

* De-facto standard for Shared-Memory Parallelization.

« 1997: OpenMP 1.0 for FORTRAN Open M P

e 1998: OpenMP 1.0 for Cand C++
e 1999: OpenMP 1.1 for FORTRAN http://www.OpenMP.org
e 2000: OpenMP 2.0 for FORTRAN
e 2002: OpenMP 2.0 for Cand C++
e 2005: OpenMP 2.5 now includes

both programming languages. RV_/TH Aac.:hen

University is a member

* 05/2008: OpenMP 3.0 of the OpenMP

e 07/2011: OpenMP 3.1 Architecture Review
Board (ARB) since 2006.

* 07/2013: OpenMP 4.0 Main topics:

 11/2015: OpenMP 4.5 = Affinity

+ 11/2018: OpenMP 5.0 - Leslding

= Tool support

* 11/2020: OpenMP 5.1 = Accelerator support

« 11/2021: OpenMP 5.2

OpenMP Tutorial
Members of the OpenMP Language Committee

What is OpenMP?

Parallel Region & Worksharing
e Tasking

e SIMD / Vectorization

* Accelerator Programming

* Memory Management

5 OpenMP Tutorial
Members of the OpenMP Language Committee

rd

Parallel Region

N

 Famr ¢

Memory Management

OpenMP

\\ [

Vectorization /

a yvdall.

TR R R EE R WV

Accelerators

N

LiIve.

It’s
Worksharing

.~ Rope!

OpenMP

Get your C/C++ and Fortran Reference Guide!
Covers all of OpenMP 5.2!

OpenMP 5.2 API Syntax Reference Guide
The OpentP® AP)is a scalable model that OpenMP is suitable for a wide range of

openmp.org

gives parallel programmers a simple and
flexible interface for developing portable
parallel applications in C/C++ and Fortran.

algorithms running on multicore nodes and
chips, NUMA systems, GPUs, and other such
devices attached to a CPU.

C/Co+ content or For Fortran content. | [n.nn) Sections i 5.2.spec | [naun) Sections in 5.1, spec | 1 See Clause nfo on pg.

Getting Started

OpenMP Examples Document

the bise languege

[
Toragma omp et specica
omp = deecsvel drectespeciicosion]|
[[usiog om : diectve| avectve speciicaion

tran rectives ae ormes
ree form owd e form sources {codes)

Isemp o speianas

rectoenome

+ omg-foglea-expression i3 C/C++ scalar expression o

Data environment directives
Ivate s212212)
sbles are rapicated we e thread
gy copyEch oy of s e v
e once prie to the et reference to tht €opy.

Wscagrma o threadevate 1)

e sesoted I of
o saparsed i of
oci Canm
decare reducton s 111
Dedores ehetonidenii tha can b uedine
Tedocton m rebvatom o k. reducion e

0\

prapmi om decire redsction.
redbesor dentir s pense o ominer)\

typensme-t:Alist o type rames
et A st o typespeciters that mus
ASS{)ar abiacttye.

OpenMP Tutorial

that follows, » Openh?. . d snd any

simtared locks3 constrcs or bk of eeatabestement itha e ary e

LOCK constrc

epercresbaisata
iogica expressicn

scanss)

structured block i 3 structured block ths
st int type or scalar integer type

allocate (ss) 12115

ch erazon ol n ced wth 3
woisharig oop waishente 10op SMD,or sond Grectve
" sttt e
omp e

stucured dlocksequence
Somp scan ciauie
srucred block secuence
douse

nchatee 1]

declare mapper [s.1.4](221 74
Decores s defed mapoe o ven e, may
el o mipper-dereife for se I8 map

s cop s o s e |

tpragma smp alocte|

omp akocate) cosse [o]

e
sgn \gnment]

et (o
pr
e omp_slocator_handie_t
+ind ome _allecator_andle bind

allocators (e

specitis ey alocators ae used for
a sssedited

wmp aocanes ciose] |,
"ok et

map ([moder, [rop mosfe, .]
o pe- 1 €1
map ype: ato, from, to, torem

esge estiher o defaut 0
baselangurge denther

Memory management directives
Memory spaces 51113

Predréned =emory s esresen
o stocage md retievlof vrisies

AP
erocmtrenw bratesatavaabs
SO e ren s Hehtandet

= lowihrey

Members of the OpenMP Language Committee

e’ hocane 0

alecote st A Forran ALLOCATE

Variant directives

Ibegh metadirective 77425

o f i g congicnaly st o ek

metadeectve Sied o he nckirg OPenM? cntee
o cmp metadiectve e | o] |

I50ms g metadrece (L
mp end metadrscts

st secfatn dreche)
ndtionsly select s

Condtonaty sekect 3 droce rant otherwhe
s named defauht WO, | cmtma

oneraa

Fortrmcontert | [nan) Seciors 5.2 |

Directives and Constructs (continued)

[begin declare variant 15451255
ncton and the

T
e [) s

docloretnd pnpssa

Informational and utility directives
oo b o requires £2]251

‘Sh4D metrections o sngle woradon Specfeshestureshtn niemenaion

% provide
et fo the cede to comsti ané 0 execute cormectly
pragma omp dedare sind <o

(Speagma omp declre sind.

Apeagnomp requies chse (11, covse].. |

5o requires e [ouse] . |

o cr o

o s e 11 o
et s ot gk
eotbing. noed_device 3er
Baurysctomiirpeatmt
sncracp g
e[ter ype)

dgredto

lgrmene Oproalcretae g s

intearch
i S pr—
notmbrnch

simdien fecgtt)

of nified_sddress, Kcoge locations in memery

swrasproc nome
The name o a funs
lrguage dante:

REQURED match

dispatch (1411246
Contret whather v
] e

e ccemsble t 1 avsbatie deices

sssume, [begin assumes 1134155
Prov ine et oy s
o et prps

e ot et
nnm omp decare tarpe e
Apeagmomp ssumes chse 1] coe]

.,..,.. o begn decirs e\ pe

g o begin asumes
el ot defninon et
spragm omp end decae et pragm o end assures

[$omp end dgonch]

prapma omp assume couse | 1 csue).
g Sroctred bk
5omp swmes ciouse [{1, i) .|

" ramed vriaies,
procsdire rames, snd named common biscs.

- o
devie fonp reger e
dertifes the targe devie the s associted
witha dece comirut

somtas oy it e
Homprogiateyresion cahate 1 tes 10
b dapachregon

nowsht £

©2023 operwip a8

i he procadrs 00 et e 5omp asume chsse) couse..
e ke hdrecty e ik
i5omp end sssume)

Sappos compltional bcos a2
tarpet egicn Nt
* for e secand - omofdeare e, et
o o st b enter
+ For beg dedare get the enter 30 Sk Causes s omp-ogicat evession)
St permitied. et G
ope.

OpenMP

Recent Books About OpenMP

OpenMP

Application Programming Interface
Specification Version 5.2

USING OPENMP—- |
THE NEXT STEP- =

Affinity, Accelerators, Tasking, and SIMD

THE OPENMP
COMMON CORE

Making OpenMP Simple Again

c
Q "
4
@
o
bl
m
4
=
5
]
—
I
m
z
m
x
=i
»
=
m
b

=
I
m
o
o]
m
z
=
<
(a)
o
=
<
Q
<
Q
S
m

Ruud van der Pas, Eric Stotzer,

and Christian Terboven Timothy G. Mattson, Yun (Helen) He,

and Alice E. Koniges

OpenMP Architecture Review Board | openmp.org

A printed copy of the 5.2 A book that covers all of the A book about the OpenMP
specifications, 2021 OpenMP 4.5 features, 2017 Common Core, 2019

7 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

Parallel Region

Christian Terboven RWTH

Michael Klemm OpenMP

OpenMP Tutorial

OpenMP

OpenMP’s machine model

* OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.

OpenMP Tutorial
Members of the OpenMP Language Committee

The OpenMP Memory Model

« All threads have access to private
the same, globally shared memory
memory

« Data in private memory is
only accessible by the thread %y accelerator
owning this memory memory

. } private
No other thread sees the private e
change(s) in private memory memory

« Data transfer is through shared
memory and is 100% transparent private
to the application ey

10 OpenMP Tutorial
Members of the OpenMP Language Committee

The OpenMP Execution Model

* OpenMP programs start with
just one thread: The Initial Thread.

* Worker threads are spawned
at Parallel Regions, together
with the initial thread they form the
Team of threads.

* |In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

* Concept: Fork-Join.
* Allows for an incremental parallelization!

11 OpenMP Tutorial
Members of the OpenMP Language Committee

Initial Thread

Worker
Threads

3

<IIIIIIIIIIIIIIIIIIIII

OpenMP

Serial Part

Parallel
Region

Serial Part

Parallel
Region

Parallel Region and Structured Blocks

* The parallelism has to be expressed explicitly.

OpenMP

C/C++

#fpragma omp parallel
{

structured block

}

Fortran

!'Somp parallel

structured block

!'Somp end parallel

e Structured Block

Exactly one entry point at the top
Exactly one exit point at the bottom
Branching in or out is not allowed

Terminating the program is allowed
(abort / exit)

12 OpenMP Tutorial
Members of the OpenMP Language Committee

Specification of number of threads:
— Environment variable: OMP NUM THREADS=...
— Or:Vianum threads clause:

add num_ threads (num) to the
parallel construct

Programming OpenMP

Using OpenMP Compilers

Christian Terboven RWTH

Michael Klemm OpenMP

OpenMP Tutorial

OpenMP

OpenMP

Production Compilers w/ OpenMP Support

m GCC

B clang/LLVM

® HPE CPE

B AOCC, AOMP, ROCmCC

B [ntel Classic and Next-gen Compilers
H IBM XL

M ... and many more

B See for a list

14 OpenMP Tutorial
Members of the OpenMP Language Committee

https://www.openmp.org/resources/openmp-compilers-tools/

OpenMP

Compiling OpenMP

B Enable OpenMP via the compiler’'s command-line switches
- GCC: -fopenmp

- clang: -fopenmp

- HPE/Cray CPE: -homp or -fopenmp

- AOCC, AOCL, ROCmCC: -fopenmp

- Intel: -fopenmp or -qopenmp (classic) or -fiopenmp (next-gen)

- IBM XL: -gsmp=omp

B Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o

$./matmul 1024
Sum of matrix (serial): 134217728.000000, wall time ©.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time ©.092162, speed-up 4.49

15 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Starting OpenMP Programs on Linux
* From within a shell, global setting of the number of threads:

export OMP NUM THREADS=4

./program

* From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

16 OpenMP Tutorial
Members of the OpenMP Language Committee

Demo OpenMP

Hello OpenMP World

17 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

Worksharing
Christian Terboven 1
Michael Klemm OpenMP

18 OpenMP Tutorial
Members of the OpenMP Language Committee

For Worksharing

If only the parallel construct is used, each thread executes the Structured Block.

Program Speedup: Worksharing

OpenMP‘s most common Worksharing construct: for

C/C++

int 1i;

#fpragma omp for

for (1 = 0; 1 < 100;
{

}

i++)

ali] = b[i] + cl[i];

Fortran

INTEGER ::

!'Somp do

DO 1 =0
ali]

END DO

i

, 99
= b[i] + c[i]

— Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

Loops often account for most of a program’s runtime!

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1
Thread 2
Serial
doi=0,99
a(i) = b(i) + c(i) -
end do
Thread 3
Thread 4

OpenMP Tutorial
Members of the OpenMP Language Committee

doi=0,24
a(i) = b(i) + c(i)
end do

doi =25, 49
a(i) = b(i) + c(i)
end do

doi=50, 74
a(i) = b(i) + c(i)
end do

doi=75,99
a(i) = b(i) + c(i)
end do

OpenMP

Memory

[~]
[1]
B(99)
C(0)
[]
C(99)

OpenMP

The Barrier Construct

* OpenMP barrier (implicit or explicit)
— Threads wait until all threads of the current Team have reached the barrier
C/C++

fpragma omp barrier

* All worksharing constructs contain an implicit barrier at the end

21 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

The Single Construct

C/C++ Fortran
#fpragma omp single [clause] !Somp single [clause]
structured block structured block
!Somp end single

* The single construct specifies that the enclosed structured block is executed by only on thread of the
team.

— Itis up to the runtime which thread that is.

* Useful for:
- 1/0
— Memory allocation and deallocation, etc. (in general: setup work)
— Implementation of the single-creator parallel-executor pattern as we will see later...

22 OpenMP Tutorial
Members of the OpenMP Language Committee

The Master Construct (will be deprecated in OpenMP 6.0)

C/C++

fpragma omp master[clause]
structured block ...

Fortran

!'Somp master[clause]

structured block ...

!Somp end master

OpenMP

* Replacement: see the masked construct later

Note: The masked construct is no worksharing construct and does not contain an implicit barrier at the end.

OpenMP Tutorial
Members of the OpenMP Language Committee

Demo OpenMP

Vector Addition

24 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Influencing the For Loop Scheduling / 1

* for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]):Similarto dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

 Defaultis schedule (static).

25 OpenMP Tutorial
Members of the OpenMP Language Committee

Influencing the For Loop Scheduling / 2 OpenMP

Static Schedule

- schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’

distributed in round-robin

fashion .

Pros?

- No/low runtime overhead

0,4

Cons?

0,2

- No dynamic workload balancing .

26 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Influencing the For Loop Scheduling / 3

* Dynamic schedule
— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size
— Threads request a new block after finishing the previous one

— Default chunk size is 1
* Pros?
— Workload distribution
 Cons?
— Runtime Overhead
— Chunk size essential for performance

— No NUMA optimizations possible

27 OpenMP Tutorial
Members of the OpenMP Language Committee

o | OpenMP
Synchronization Overview

Can all loops be parallelized with £or-constructs? No!

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent.
BUT: This test alone is not sufficient:

C/C++
int i, int s = 0;

#fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

s =s + al[il;

}

Data Race: If between two synchronization points at least one thread writes to a memory location from
which at least one other thread reads, the result is not deterministic (race condition).

28 OpenMP Tutorial
Members of the OpenMP Language Committee

o OpenMP
Synchronization: Critical Region

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

#fpragma omp critical (name)
{

structured block ..

}

* Do you think this solution scales well?

C/C++

int i, s = 0;

ftpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#pragma omp critical
{ s =s + alil; !

}

29 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP
Scoping

Christian Terboven RWTH

Michael Klemm OpenMP

30 OpenMP Tutorial
Members of the OpenMP Language Committee

Scoping Rules

Managing the Data Environment is the challenge of OpenMP.

Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs

— General default is shared for Parallel Region, firstprivate for Tasks.

OpenMP

— Loop control variables on for-constructs are private [

— Non-static variables local to Parallel Regions are private
— private: A new uninitialized instance is created for the task or each thread executing the construct
 firstprivate: Initialization with the value before encountering the construct
* lastprivate: Value of last loop iteration is written back to the initial thread
— Static variables are shared

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive
— One instance is created for each thread
* Before the first parallel region is encountered
* Instance exists until the program ends
* Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
* TIsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword = thread (GNU extension)

C/C++ Fortran
static int i; SAVE INTEGER :: 1
#fpragma omp threadprivate (i) !Somp threadprivate (i)

32 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive ‘e
°

— Oneinstance is created for each thread

* Before the first parallel region is encountered 6Q(\
* Instance exists until the program ends ‘ez
* Does not work (well) with nested Parallel Region ‘\\

— Based on thread-local storage (TLS) O& \

* TlsAlloc (Win32-Threads), pthread_key_create (P@%re d‘&ﬁvord __thread (GNU extension)

- 6’&6 \\'?>‘\?>

C/C++ z“ ‘6‘\ ' Fortran
static int i; \,o) SAVE INTEGER :: i
#pragma ‘(* @(\ > (1) !Somp threadprivate (1)

e

33 OpenMP Tutorial
Members of the OpenMP Language Committee

Back to our example

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

C/C++

int i, s = 0;

#fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#pragma omp critical
{ s =s + alil; !}

It‘s your turn: Make It Scale! OpenMP

#pragma omp parallel

doi=0, 24
{ s=s+ali)
end do

#pragma omp for doi= 25,49
for (1 = 0; 1 < 99; 1i++) s=s+ a(i)

{ doi=0, 99 end do
s=s+a(i) | =P

s = S + alil; end do

doi=50, 74
s=s+afi)
end do

doi=75,99
s=s+afi)

} // end parallel end do

35 OpenMP Tutorial
Members of the OpenMP Language Committee

(done)

#pragma omp parallel

{
double ps = 0.0; // private variable

#pragma omp for
for (i = 0; 1 < 99; 1i++)
{
ps = ps + ali];
}

#pragma omp critical
{
s += ps;
}
} // end parallel

36 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

doi=0,24

s, =5, +ali)
end do
S=S+5;

doi=0,99
s=s+ai)
end do

doi=25, 49
S, =5, + ali)

end do

S=s+5,

doi=50, 74
S3 =53 + a(i)

end do

S=5+ 53

doi=75,99
S, =54+ ali)

end do

S=s+5,

The Reduction Clause

— reduction (operator:1list)

— The result is provided in the associated reduction variable

C/C++
int i,
for(i = 0;

{

S:

}

s = 0;

s + al[i]l;

i++)

#fpragma omp parallel for reduction (+:s)
i < 99;

— Possible reduction operators with initialization value:

+ (0), * (1), -
(largest number),

— Remark: OpenMP also supports user-defined reductions (not covered here)

OpenMP Tutorial
Members of the OpenMP Language Committee

(0),

max

&

(~0), | (0),
(least number)

&&

(1),

OpenMP

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.

Example OpenMP

Pl

38 OpenMP Tutorial
Members of the OpenMP Language Committee

Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{
const double fH =1.0/(double) n;

double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for
for (i=0;i<n;i++)

fX = fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

39 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

=

|

(=]

1+ x2

Example: Pi (2/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{
const double fH =1.0/(double) n;

double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for (i=0;i<n;i++)

fX = fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

40 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

=

|

(=]

1+ x2

Programming OpenMP

OpenMP Tasking Introduction

Christian Terboven RWTH

Michael Klemm OpenMP

OpenMP Tutorial

OpenMP

OpenMP

Tasking Execution Model

B Supports unstructured parallelism B Example (unstructured parallelism)
— unbounded loops #pragma omp parallel
. #pragma omp masked
while (<expr>) { while (elem '= NULL) {
y T #pragma omp task

compute (elem) ;
elem = elem->next;

- recursive functions

void myfunc(<args>)

{

.; myfunc(<newargs>); ...;

}

B Several scenarios are possible:
—> single creator, multiple creators, nested tasks (tasks & WS)

B All threads in the team are candidates to execute tasks

42 OpenMP Tutorial
Members of the OpenMP Language Committee

What is a Task in OpenMP? OpenMP

B Tasks are work units whose execution

- may be deferred or...

—> ... can be executed immediately

B Tasks are composed of

— code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

B Tasks are created...
... when reaching a parallel region - implicit tasks are created (per thread)
... when encountering a task construct - explicit task is created
... when encountering a taskloop construct - explicit tasks per chunk are created

... when encountering a target construct - target task is created

43 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

OpenMP Tasking Idiom

B OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel masked
- OpenMP version 5.0 introduced the parallel master construct

- With OpenMP version 5.1 this becomes parallel masked

1 int main(int argc, char* argv[]) 1 int main(int argc, char* argv[])
2 A 2 A

3 [...] 3 [...]

4 #pragma omp parallel 4 #pragma omp parallel

5 { 5 {

6 #pragma omp masked 6 #pragma omp single

7 { 7 {

9 start_task_parallel execution(); 9 start_task_parallel execution();
9 } 9 }
10 } 10 }
11 [...] 11 [...]
12 } 12 }

44 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Fibonacci Numbers (in a Stupid Way ©)

1 int main(int argc, 14 int fib(int n) {

2 char* argv[]) 15 if (n < 2) return n;

3 { 16 int x, y;

4 [...] 17 #pragma omp task shared(x)
5 #pragma omp parallel 18 {

6 { 19 x = fib(n - 1);

7 #pragma omp masked 20 }

8 { 21 #pragma omp task shared(y)
9 fib(input); 22 {
10 } 23 y = fib(n - 2);
11 } 24 }
12 [...] 25 #pragma omp taskwait
13 } 26 return x+y;

27 }

B Only one thread enters fib() from main().
B That thread creates the two initial work tasks and starts the parallel recursion.
B The taskwait construct is required to wait for the result for x and y before the task can sum up.

45 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks
from the queue

T1 and T2 create 4 new
tasks

T1 - T4 execute tasks

Task Queue

46 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks
from the queue

T1 and T2 create 4 new
tasks

T1 - T4 execute tasks

Vi OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

Hands-on Exercises

Christian Terboven RWTH

Michael Klemm OpenMP

48 OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Exercises

B We have implemented a series of small hands-on examples that you can use and play with.
- Download: https://github.com/NERSC/openmp-series-2024

- Build: make

B Each hands-on exercise has a folder “solution”

-~ It shows the OpenMP solution that we have added

— You can use it to cheat ©, or to check if you came up with the same solution

49 OpenMP Tutorial
Members of the OpenMP Language Committee

https://github.com/NERSC/openmp-series-2024

Exercises: Overview

1 Hello World

2 Pi

3 Jacobi

4 Work-Distribution
5 Min/Max

50 OpenMP Tutorial
Members of the OpenMP Language Committee

Getting started
Worksharing, Scoping
Worksharing, Scoping
Worksharing

Worksharing, Reduction

OpenMP

Start with this (if OpenMP is new for you)
First day
First day
First day
First day

OpenMP

OpenMP Tutorial
Members of the OpenMP Language Committee

