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OpenMP

Agenda (in total 7 Sessions)

B Session 1: OpenMP Introduction
- Welcome
- OpenMP Overview
—> Parallel Region
- Worksharing
- Scoping
—> Tasking (short introduction)
— Executing OpenMP programs
—~>Homework assignments ©
- Compile and run on Perlmutter CPUs

B Session 2: Tasking
B Session 3: Optimization for NUMA and SIMD
B Session 4: What Could Possibly Go Wrong Using OpenMP
B Session 5: Introduction to Offloading with OpenMP
B Session 6: Advanced OpenMP Offloading Topics
‘ Sgssion 7: Selected / Remaining Topics
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OpenMP

History

* De-facto standard for Shared-Memory Parallelization.

« 1997: OpenMP 1.0 for FORTRAN Open M P

e 1998: OpenMP 1.0 for Cand C++
e 1999: OpenMP 1.1 for FORTRAN http://www.OpenMP.org
e 2000: OpenMP 2.0 for FORTRAN
e 2002: OpenMP 2.0 for Cand C++
e 2005: OpenMP 2.5 now includes

both programming languages. RV\_/TH Aac.:hen

University is a member

* 05/2008: OpenMP 3.0 of the OpenMP

e 07/2011: OpenMP 3.1 Architecture Review
Board (ARB) since 2006.

* 07/2013: OpenMP 4.0 Main topics:

 11/2015: OpenMP 4.5 = Affinity

+ 11/2018: OpenMP 5.0 - Leslding

= Tool support

* 11/2020: OpenMP 5.1 = Accelerator support

« 11/2021: OpenMP 5.2
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What is OpenMP?

Parallel Region & Worksharing
e Tasking

e SIMD / Vectorization

* Accelerator Programming

* Memory Management
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OpenMP

Get your C/C++ and Fortran Reference Guide!
Covers all of OpenMP 5.2!

OpenMP 5.2 API Syntax Reference Guide
The OpentP® AP)is a scalable model that  OpenMP is suitable for a wide range of

openmp.org

gives parallel programmers a simple and
flexible interface for developing portable
parallel applications in C/C++ and Fortran.

algorithms running on multicore nodes and
chips, NUMA systems, GPUs, and other such
devices attached to a CPU.

C/Co+ content or For Fortran content. | [n.nn) Sections i 5.2.spec | [naun) Sections in 5.1, spec | 1 See Clause nfo on pg.

Getting Started

OpenMP Examples Document
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OpenMP

Recent Books About OpenMP

OpenMP

Application Programming Interface
Specification Version 5.2

USING OPENMP—- |
THE NEXT STEP- =

Affinity, Accelerators, Tasking, and SIMD

THE OPENMP
COMMON CORE

Making OpenMP Simple Again
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Ruud van der Pas, Eric Stotzer,

and Christian Terboven Timothy G. Mattson, Yun (Helen) He,

and Alice E. Koniges

OpenMP Architecture Review Board | openmp.org

A printed copy of the 5.2 A book that covers all of the A book about the OpenMP
specifications, 2021 OpenMP 4.5 features, 2017 Common Core, 2019
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OpenMP

OpenMP’s machine model

* OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

Parallelization in OpenMP
employs multiple threads.

OpenMP Tutorial
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The OpenMP Memory Model

« All threads have access to private
the same, globally shared memory
memory

« Data in private memory is
only accessible by the thread %y accelerator
owning this memory memory

. } private
No other thread sees the private e
change(s) in private memory memory

« Data transfer is through shared
memory and is 100% transparent private
to the application ey

10 OpenMP Tutorial
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The OpenMP Execution Model

* OpenMP programs start with
just one thread: The Initial Thread.

*  Worker threads are spawned
at Parallel Regions, together
with the initial thread they form the
Team of threads.

* |In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

* Concept: Fork-Join.
* Allows for an incremental parallelization!

11 OpenMP Tutorial
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Parallel Region and Structured Blocks

* The parallelism has to be expressed explicitly.

OpenMP

C/C++

#fpragma omp parallel
{

structured block

}

Fortran

!'Somp parallel

structured block

!'Somp end parallel

e Structured Block

Exactly one entry point at the top
Exactly one exit point at the bottom
Branching in or out is not allowed

Terminating the program is allowed
(abort / exit)

12 OpenMP Tutorial
Members of the OpenMP Language Committee

Specification of number of threads:
— Environment variable: OMP NUM THREADS=...
— Or:Vianum threads clause:

add num_ threads (num) to the
parallel construct
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OpenMP

Production Compilers w/ OpenMP Support

m GCC

B clang/LLVM

® HPE CPE

B AOCC, AOMP, ROCmCC

B [ntel Classic and Next-gen Compilers
H IBM XL

M ... and many more

B See for a list

14 OpenMP Tutorial
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https://www.openmp.org/resources/openmp-compilers-tools/

OpenMP

Compiling OpenMP

B Enable OpenMP via the compiler’'s command-line switches
- GCC: -fopenmp

- clang: -fopenmp

- HPE/Cray CPE: -homp or -fopenmp

- AOCC, AOCL, ROCmCC: -fopenmp

- Intel: -fopenmp or -qopenmp (classic) or -fiopenmp (next-gen)

- IBM XL: -gsmp=omp

B Switches have to be passed to both compiler and linker:

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o

$./matmul 1024
Sum of matrix (serial): 134217728.000000, wall time ©.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time ©.092162, speed-up 4.49

15 OpenMP Tutorial
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OpenMP

Starting OpenMP Programs on Linux
* From within a shell, global setting of the number of threads:

export OMP NUM THREADS=4

./program

*  From within a shell, one-time setting of the number of threads:
OMP NUM THREADS=4 ./program

16 OpenMP Tutorial
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Demo OpenMP

Hello OpenMP World

17 OpenMP Tutorial
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OpenMP

Programming OpenMP

Worksharing
Christian Terboven 1
Michael Klemm OpenMP
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For Worksharing

If only the parallel construct is used, each thread executes the Structured Block.

Program Speedup: Worksharing

OpenMP‘s most common Worksharing construct: for

C/C++

int 1i;

#fpragma omp for

for (1 = 0; 1 < 100;
{

}

i++)

ali] = b[i] + cl[i];

Fortran

INTEGER ::

!'Somp do

DO 1 =0
ali]

END DO

i

, 99
= b[i] + c[i]

— Distribution of loop iterations over all threads in a Team.

— Scheduling of the distribution can be influenced.

Loops often account for most of a program’s runtime!

OpenMP Tutorial
Members of the OpenMP Language Committee
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Worksharing illustrated

Pseudo-Code
Here: 4 Threads

Thread 1
Thread 2
Serial
doi=0,99
a(i) = b(i) + c(i) -
end do
Thread 3
Thread 4

OpenMP Tutorial
Members of the OpenMP Language Committee

doi=0,24
a(i) = b(i) + c(i)
end do

doi =25, 49
a(i) = b(i) + c(i)
end do

doi=50, 74
a(i) = b(i) + c(i)
end do

doi=75,99
a(i) = b(i) + c(i)
end do

OpenMP

Memory

[~ ]
[ 1]
B(99)
C(0)
[ ]
C(99)



OpenMP

The Barrier Construct

* OpenMP barrier (implicit or explicit)
— Threads wait until all threads of the current Team have reached the barrier
C/C++

fpragma omp barrier

* All worksharing constructs contain an implicit barrier at the end

21 OpenMP Tutorial
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OpenMP

The Single Construct

C/C++ Fortran
#fpragma omp single [clause] !Somp single [clause]
structured block ... ... structured block
!Somp end single

* The single construct specifies that the enclosed structured block is executed by only on thread of the
team.

— Itis up to the runtime which thread that is.

* Useful for:
- 1/0
— Memory allocation and deallocation, etc. (in general: setup work)
— Implementation of the single-creator parallel-executor pattern as we will see later...

22 OpenMP Tutorial
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The Master Construct (will be deprecated in OpenMP 6.0)

C/C++

fpragma omp master[clause]
structured block ...

Fortran

!'Somp master[clause]

structured block ...

!Somp end master

OpenMP

* Replacement: see the masked construct later

Note: The masked construct is no worksharing construct and does not contain an implicit barrier at the end.

OpenMP Tutorial
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Demo OpenMP

Vector Addition

24 OpenMP Tutorial
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OpenMP

Influencing the For Loop Scheduling / 1

* for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

— schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to
threads in a round-robin fashion. If chunk is not specified: #threads blocks.

— schedule (dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size,
blocks are scheduled to threads in the order in which threads finish previous blocks.

— schedule (guided [, chunk]):Similarto dynamic, but block size starts with implementation-defined
value, then is decreased exponentially down to chunk.

 Defaultis schedule (static).

25 OpenMP Tutorial
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Influencing the For Loop Scheduling / 2 OpenMP

Static Schedule

- schedule (static [, chunk])

- Decomposition

depending on chunksize

- Equal parts of size ‘chunksize’

distributed in round-robin

fashion .

Pros?

- No/low runtime overhead

0,4

Cons?

0,2

- No dynamic workload balancing .

26 OpenMP Tutorial
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OpenMP

Influencing the For Loop Scheduling / 3

* Dynamic schedule
— schedule (dynamic [, chunk])
— lteration space divided into blocks of chunk size
— Threads request a new block after finishing the previous one

— Default chunk size is 1
* Pros?
— Workload distribution
 Cons?
— Runtime Overhead
— Chunk size essential for performance

— No NUMA optimizations possible

27 OpenMP Tutorial
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o | OpenMP
Synchronization Overview

Can all loops be parallelized with £or-constructs? No!

— Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent.
BUT: This test alone is not sufficient:

C/C++
int i, int s = 0;

#fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

s =s + al[il;

}

Data Race: If between two synchronization points at least one thread writes to a memory location from
which at least one other thread reads, the result is not deterministic (race condition).

28 OpenMP Tutorial
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o OpenMP
Synchronization: Critical Region

A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

C/C++

#fpragma omp critical (name)
{

structured block ..

}

* Do you think this solution scales well?

C/C++

int i, s = 0;

ftpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#pragma omp critical
{ s =s + alil; !

}

29 OpenMP Tutorial
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OpenMP

Programming OpenMP
Scoping

Christian Terboven RWTH

Michael Klemm OpenMP
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Scoping Rules

Managing the Data Environment is the challenge of OpenMP.

Scoping in OpenMP: Dividing variables in shared and private:
— private-list and shared-list on Parallel Region
— private-list and shared-list on Worksharing constructs

— General default is shared for Parallel Region, firstprivate for Tasks.

OpenMP

— Loop control variables on for-constructs are private [

— Non-static variables local to Parallel Regions are private
— private: A new uninitialized instance is created for the task or each thread executing the construct
 firstprivate: Initialization with the value before encountering the construct
* lastprivate: Value of last loop iteration is written back to the initial thread
— Static variables are shared

OpenMP Tutorial
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OpenMP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive
— One instance is created for each thread
* Before the first parallel region is encountered
* Instance exists until the program ends
* Does not work (well) with nested Parallel Region

— Based on thread-local storage (TLS)
* TIsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword = thread (GNU extension)

C/C++ Fortran
static int i; SAVE INTEGER :: 1
#fpragma omp threadprivate (i) !Somp threadprivate (i)

32 OpenMP Tutorial
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OpenMP

Privatization of Global/Static Variables

* Global / static variables can be privatized with the threadprivate directive ‘e
°

— Oneinstance is created for each thread

* Before the first parallel region is encountered 6Q(\
* Instance exists until the program ends ‘ez
* Does not work (well) with nested Parallel Region ‘\\

— Based on thread-local storage (TLS) O& \

* TlsAlloc (Win32-Threads), pthread_key_create (P@%re d‘&ﬁvord __thread (GNU extension)

- 6’&6 \\'?>‘\?>

C/C++ z“ ‘6‘\ ' Fortran
static int i; \,o ) SAVE INTEGER :: i
#pragma ‘(* @(\ > (1) !Somp threadprivate (1)

e

33 OpenMP Tutorial
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Back to our example

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

C/C++

int i, s = 0;

#fpragma omp parallel for
for (1 = 0; 1 < 100; i++)
{

#pragma omp critical
{ s =s + alil; !}




It‘s your turn: Make It Scale! OpenMP

#pragma omp parallel

doi=0, 24
{ s=s+ali)
end do

#pragma omp for doi= 25,49
for (1 = 0; 1 < 99; 1i++) s=s+ a(i)

{ doi=0, 99 end do
s=s+a(i) | =P

s = S + alil; end do

doi=50, 74
s=s+afi)
end do

doi=75,99
s=s+afi)

} // end parallel end do

35 OpenMP Tutorial
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(done)

#pragma omp parallel

{
double ps = 0.0; // private variable

#pragma omp for
for (i = 0; 1 < 99; 1i++)
{
ps = ps + ali];
}

#pragma omp critical
{
s += ps;
}
} // end parallel

36 OpenMP Tutorial
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doi=0,24

s, =5, +ali)
end do
S=S+5;

doi=0,99
s=s+ai)
end do

doi=25, 49
S, =5, + ali)

end do

S=s+5,

doi=50, 74
S3 =53 + a(i)

end do

S=5+ 53

doi=75,99
S, =54+ ali)

end do

S=s+5,




The Reduction Clause

— reduction (operator:1list)

— The result is provided in the associated reduction variable

C/C++
int i,
for(i = 0;

{

S:

}

s = 0;

s + al[i]l;

i++)

#fpragma omp parallel for reduction (+:s)
i < 99;

— Possible reduction operators with initialization value:

+ (0), * (1), -
(largest number),

— Remark: OpenMP also supports user-defined reductions (not covered here)

OpenMP Tutorial
Members of the OpenMP Language Committee

(0),

max

&

(~0), | (0),
(least number)

&&

(1),

OpenMP

In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.



Example OpenMP

Pl
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Example: Pi (1/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{
const double fH =1.0/(double) n;

double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for
for (i=0;i<n;i++)

fX = fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

39 OpenMP Tutorial
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Example: Pi (2/2)

double f(double x)

{
return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{
const double fH =1.0/(double) n;

double fSum = 0.0;
double fX;
inti;

#pragma omp parallel for private(fX,i) reduction(+:fSum)
for (i=0;i<n;i++)

fX = fH * ((double)i + 0.5);
fSum += f(fX);
}

return fH * fSum;

}

40 OpenMP Tutorial
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OpenMP

Tasking Execution Model

B Supports unstructured parallelism B Example (unstructured parallelism)
— unbounded loops #pragma omp parallel
. #pragma omp masked
while ( <expr>) { while (elem '= NULL) {
y T #pragma omp task

compute (elem) ;
elem = elem->next;

- recursive functions

void myfunc( <args> )

{

.; myfunc( <newargs> ); ...;

}

B Several scenarios are possible:
—> single creator, multiple creators, nested tasks (tasks & WS)

B All threads in the team are candidates to execute tasks

42 OpenMP Tutorial
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What is a Task in OpenMP? OpenMP

B Tasks are work units whose execution

- may be deferred or...

—> ... can be executed immediately

B Tasks are composed of

— code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

B Tasks are created...
... when reaching a parallel region - implicit tasks are created (per thread)
... when encountering a task construct - explicit task is created
... when encountering a taskloop construct - explicit tasks per chunk are created

... when encountering a target construct - target task is created

43 OpenMP Tutorial
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OpenMP

OpenMP Tasking Idiom

B OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel masked
- OpenMP version 5.0 introduced the parallel master construct

- With OpenMP version 5.1 this becomes parallel masked

1 int main(int argc, char* argv[]) 1 int main(int argc, char* argv[])
2 A 2 A

3 [...] 3 [...]

4 #pragma omp parallel 4 #pragma omp parallel

5 { 5 {

6 #pragma omp masked 6 #pragma omp single

7 { 7 {

9 start_task_parallel execution(); 9 start_task_parallel execution();
9 } 9 }
10 } 10 }
11 [...] 11 [...]
12 } 12 }
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OpenMP

Fibonacci Numbers (in a Stupid Way ©)

1 int main(int argc, 14 int fib(int n) {

2 char* argv[]) 15 if (n < 2) return n;

3 { 16 int x, y;

4 [...] 17 #pragma omp task shared(x)
5 #pragma omp parallel 18 {

6 { 19 x = fib(n - 1);

7 #pragma omp masked 20 }

8 { 21 #pragma omp task shared(y)
9 fib(input); 22 {
10 } 23 y = fib(n - 2);
11 } 24 }
12 [...] 25 #pragma omp taskwait
13 } 26 return x+y;

27 }

B Only one thread enters fib() from main().
B That thread creates the two initial work tasks and starts the parallel recursion.
B The taskwait construct is required to wait for the result for x and y before the task can sum up.

45 OpenMP Tutorial
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OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks
from the queue

T1 and T2 create 4 new
tasks

T1 - T4 execute tasks

Task Queue

46 OpenMP Tutorial
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OpenMP

T1 enters fib(4)

T1 creates tasks for
fib(3) and fib(2)

T1 and T2 execute tasks
from the queue

T1 and T2 create 4 new
tasks

T1 - T4 execute tasks
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Programming OpenMP

Hands-on Exercises
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OpenMP

Exercises

B We have implemented a series of small hands-on examples that you can use and play with.
- Download: https://github.com/NERSC/openmp-series-2024

- Build: make

B Each hands-on exercise has a folder “solution”

-~ It shows the OpenMP solution that we have added

— You can use it to cheat ©, or to check if you came up with the same solution
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https://github.com/NERSC/openmp-series-2024

Exercises: Overview

1 Hello World

2 Pi

3 Jacobi

4 Work-Distribution
5 Min/Max
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Getting started
Worksharing, Scoping
Worksharing, Scoping
Worksharing

Worksharing, Reduction

OpenMP

Start with this (if OpenMP is new for you)
First day
First day
First day
First day



OpenMP

OpenMP Tutorial
Members of the OpenMP Language Committee



