
TotalView by Perforce© 2019 Perforce Software, Inc.TotalView by Perforce © Perforce Software, Inc.

TotalView Training - NERSC
MAY 13, 2024

totalview.io2 | TotalView by Perforce © Perforce Software, Inc.

• Introduction

• Latest TotalView Features

• TotalView Roadmap

• Remote Debugging Techniques

• Review of General Debugging Features

• TotalView Debugging at NERSC Best
Practices

• GPU Debugging with TotalView on
Perlmutter (10:00am)

• MPI and OpenMP debugging

• Reverse Debugging

• Memory Debugging

• Common TotalView Usage Questions

• Q&A

LBL/NERSC Agenda – May 2024

totalview.io3 | TotalView by Perforce © Perforce Software, Inc.

• Bill Burns (Senior Director of Software Engineering and Product Manager)

bburns@perforce.com

• John DelSignore (TotalView Chief Architect)

jdelsignore@perforce.com

• Larry Edelstein (Manager, Sales Engineering, TotalView)

ledelstein@perforce.com

Introductions

mailto:bburns@perforce.com
mailto:jdelsignore@perforce.com
mailto:jdelsignore@perforce.com

totalview.io5 | TotalView by Perforce © Perforce Software, Inc.

App
Lifecycle
Mgmt. Agile

Mgmt.

Version
Control \

Code Review

Collaborate

App
Dev.

Mobile

API

Functional
Performance

Security

Code Quality
& Standards

Monitoring

App
Mgmt.

Open
Source

C R E A T E

V A L I D A T E T E S T

O P E R A T E

P L A N

Solving the Hardest Challenges in DevOps

totalview.io6 | TotalView by Perforce © Perforce Software, Inc.

Perforce Products

Agile
Management

Automated
Testing

Application Mgmt.
& Components

Code Management
& Collaboration

Hansoft

Helix ALM

Gliffy

Helix Core

Helix4Git

JRebel

TotalView Visualization

SourcePro

IMSL

Akana

Zend

OpenLogic

Helix QAC

Klocwork

Perfecto

BlazeMeter

Methodics

Puppet

Overview of TotalView Labs

totalview.io11 | TotalView by Perforce © Perforce Software, Inc.

Overview of TotalView Labs

Nine different labs and accompanying example programs

• Lab 1 - Debugger Basics: Startup, Basic Process Control,
and Navigation

• Lab 2 - Viewing, Examining, Watching, and Editing Data

• Lab 3 - Examining and Controlling a Parallel Application

• Lab 4 - Exploring Heap Memory in an MPI Application

• Lab 5 - Debugging Memory Comparisons and Heap
Baseline *

• Lab 6 - Memory Corruption discovery using Red Zones *

• Lab 7 - Batch Mode Debugging with TVScript

• Lab 8 - Reverse Debugging with ReplayEngine

• Lab 9 - Asynchronous Control Lab

Notes

• * Labs 5 and 6 require use of TotalView’s Classic UI

• Sample program breakpoint files were created with
GNU compilers. If a different compiler is used, they
may not load and will need to be recreated.

• Several example programs use OpenMPI so you will
need to configure your environment beforehand.

• We do not have a lab specific to Python Debugging
yet. There are good examples and instructions in the
TotalView totalview.<version>/<linux-x86-
64>/examples/PythonExamples directory.

• Use this slide deck for GPU specific debugging
information

TotalView Features

totalview.io13 | TotalView by Perforce © Perforce Software, Inc.

• Provides interactive Dynamic Analysis capabilities to help:
• Understand complex code

• Improve code quality

• Collaborate with team members to resolve issues faster

• Shorten development time

• Finds problems and bugs in applications including:
• Program crash or incorrect behavior

• Data issues

• Application memory leaks and errors

• Communication problems between processes and threads

• CUDA application analysis and debugging

• Contains batch and Continuous Integration capabilities to:
• Debug applications in an automated run/test environment

What is TotalView used for?

totalview.io14 | TotalView by Perforce © Perforce Software, Inc.

TotalView Features

• Multi-process/thread dynamic analysis and
debugging

• Comprehensive C, C++ and Fortran Support
• Thread specific breakpoints with

individual thread control
• View thread specific stack and data

• View complex data types easily
• MPI, OpenMP, Hybrid support
• NVIDIA (CUDA) and AMD (HIP) GPU support
• Convenient remote debugging
• Integrated Reverse debugging
• Mixed Language - Python C/C++ debugging
• Memory debugging
• Script debugging
• Linux, macOS and UNIX
• More than just a tool to find bugs

• Understand complex code
• Improve developer efficiency
• Collaborate with team members
• Improve code quality
• Shorten development time

Recent TotalView Features

totalview.io16 | TotalView by Perforce © Perforce Software, Inc.

TotalView Remote Client for Windows

• TotalView 2024.1 adds native Windows remote
client support

• Combine the convenience of establishing a
remote connection to a cluster and the ability
to run the TotalView GUI locally

• Front-end GUI architecture does not need to
match back-end target architecture (macOS
front-end -> Linux back-end)

• Secure communications

• Convenient saved sessions

• Once connected, debug as normal with access
to all TotalView features

• Windows, macOS and Linux native
front-ends

totalview.io18 | TotalView by Perforce © Perforce Software, Inc.

TotalView 2024.1 Platform Updates

Platform / Compiler Updates

• macOS Sonoma

• AMD GPU ROCm 6.0 and MI300

Other Updates

• Various bug fixes and other minor enhancements

• Third-party open-source package updates — security

totalview.io19 | TotalView by Perforce © Perforce Software, Inc.

• Assembly and Register View

• C++ Type Transformations

• Iterator support

• Additional container classes

• Array Debugging

• Array View

• Array Visualization

• Apple ARM M1/2/3 support

• Memory Debugging Additions

• Hoarding and Painting

• Buffer overwrite detection

Other Recent TotalView Updates

TotalView Memory Debugging

totalview.io126 | TotalView by Perforce © Perforce Software, Inc.

• A Memory Bug is a mistake in the management of heap memory

• Leaking: Failure to free memory

• Dangling references: Failure to clear pointers

• Failure to check for error conditions

• Memory Corruption

• Writing to memory not allocated

• Overrunning array bounds

What is a Memory Bug?

totalview.io127 | TotalView by Perforce © Perforce Software, Inc.

• Advantages of TotalView HIA Technology

• Use it with your existing builds

• No Source Code or Binary Instrumentation

• Programs run nearly full speed

• Low performance overhead

• Low memory overhead

• Efficient memory usage

TotalView Heap Interposition Agent (HIA) Technology

Malloc API

User Code and Libraries

Process

TotalView

Heap Interposition
Agent (HIA)

Allocation
Table

Deallocation
Table

totalview.io128 | TotalView by Perforce © Perforce Software, Inc.

The Agent and Interposition

Process

TotalView

Malloc API

User Code and Libraries

totalview.io129 | TotalView by Perforce © Perforce Software, Inc.

The Agent and Interposition

Malloc API

User Code and Libraries

Process

TotalView
Heap Interposition

Agent (HIA)
Allocation

Table
Deallocation

Table

totalview.io131 | TotalView by Perforce © Perforce Software, Inc.

Memory Debugging in TotalView’s New UI

TotalView 2024.1 Features
• Leak detection
• Dangling pointer detection
• Heap allocation overview
• Automatically detect allocation problems

• Memory Corruption Detection - Guard
Blocks

• Memory Block Painting
• Memory Hoarding

Coming Features

• Graphical heap view
• Memory Corruption Detection - Red Zones
• Memory Comparisons between processes

Memory Debugging Demo

totalview.io160 | TotalView by Perforce © Perforce Software, Inc.

• Memory Debugging Demo

Demo

Debugging OpenMP Applications

totalview.io162 | TotalView by Perforce © Perforce Software, Inc.

• Source-level debugging of the original OpenMP code (C, C++, and Fortran)

• Debug code inside of OMP parallel and task regions
• Set stop-thread breakpoints, single-step, etc.

• View OMP shared, private, and threadprivate variables

• Debug code inside OMP target regions
• On NVIDIA GPUs, similar to debugging CUDA code

• On AMD GPUs, similar to debugging HIP code

• CORAL-2 OMP/OMPD support (scheduled for TotalView 2024.2 release)
• Focuses on Clang, AMD Clang/Flang, and HPE CCE compilers

• Evaluates quality DWARF debug information produced by the compiler

• Adds TotalView OpenMP views to display the runtime state of regions, threads, control variables, and ICVs

• OpenMP thread-stack transformations: filter-out OMP runtime frames, annotate parallel/task regions, and insert parent links

• Demangles OpenMP outlined function names

TotalView Support for OpenMP

totalview.io163 | TotalView by Perforce © Perforce Software, Inc.

• OpenMP programs are multi-threaded programs

• Use normal debugging techniques for multi-threaded programs

• Use stop-thread breakpoints inside parallel regions

• Use thread-level execution controls: hold/unhold thread, single-step threads / thread groups

• OpenMP parallel and task regions are in outlined functions

• A single line of source code can generate multiple block of machine code

• Outlined function names are mangled by the compiler, but TV 2024.2 will support OMP name demangling

• TV 2024.2 will support step into and out of OMP parallel region, if the compiler supports OMPD properly

• Otherwise, set a breakpoint inside the parallel region and let the process run to it

• OpenMP target regions are offloaded to the GPU
• Use normal debugging techniques for CUDA / HIP

• Unfortunately, OMPD information is not available for target regions

Debugging OpenMP Applications

totalview.io164 | TotalView by Perforce © Perforce Software, Inc.

Enabling OMPD Support (TV 2024.2)

• TotalView OMPD support requires compiler support

• Clang 15+, HPE CCE 17+, AMD Clang/Flang 17+

• OMPD support is still maturing

• Special linking rules might apply (check the doc)

• Set OMPD environment variable

• OMP_DEBUG=enabled

• MPI + OpenMP codes require setting the
environment variable in the MPI processes

• Use to propagate OMP_DEBUG setting

• Select “Enable OpenMP Debugging”
• Good for non-MPI codes launched by the debugger

• Does not work for processes that are attached to

totalview.io165 | TotalView by Perforce © Perforce Software, Inc.

Example OpenMP Debugging Session (TV 2024.2)

• Example using AMD Clang 17

• LLVM Clang works but has
some issues

• HPE CCE works but has some
issues

• gcc / gfortran works but
OMPD support not tested

• Set stop-thread breakpoints
inside parallel / task region

• Make sure the whole process is
stopped so that the OpenMP
runtime is in a consistent state

totalview.io166 | TotalView by Perforce © Perforce Software, Inc.

OpenMP > Regions (TV 2024.2)

• Displays parallel and task regions

• Aggregated view of all OpenMP threads

• “Regions” tab shows

• Source-code line-number of OMP region

• OMP implicit or explicit task function name

• OpenMP threads that are in the region

totalview.io167 | TotalView by Perforce © Perforce Software, Inc.

OpenMP Threads (TV 2024.2)

• Thread-oriented view of OMP threads
• For the focus process

• Current state plus nest of OMP generating task regions

• “Threads” tab shows
• Debugger process/thread ID and OMP thread-num

• Current state of OMP thread / region #

• Wait ID / Parent (encountering thread) ID

• Region flags
• “i” implicit vs. explicit task

• “p” active parallel region

• “f” final task

• Task function and source-code line-number

• Runtime frame information (not shown)

totalview.io168 | TotalView by Perforce © Perforce Software, Inc.

OpenMP > ICVs (TV 2024.2)

• Hierarchical view of OpenMP internal control variables

• For the focus process

• Organized by OpenMP scope

• Global / address space scope

• Thread scope

• Parallel region scope

• Task / implicit task scope

totalview.io169 | TotalView by Perforce © Perforce Software, Inc.

OpenMP Stack Transformations

• Select the filter icon to filter

• OpenMP thread-stack transformations

• Filters-out OMP runtime frames

• Annotates parallel/task regions

• Inserts parent thread links (click to focus on parent
thread)

Original

Filtered

totalview.io170 | TotalView by Perforce © Perforce Software, Inc.

• OpenMP support prior to TotalView 2024.2 is a prototype

• Not fully supported w/ limited compiler support

• Has bugs and other problems with OpenMP displays

• LLVM/Clang-based compilers do not do a good at generating DWARF debug information

• Program variables inside regions are all marked artificial, so TotalView does not display them

• Use TotalView “-compiler_vars” option to display program variables, but compiler-generated variables are also displayed

• Parallel “for” loop variables do not have correct values

• Many other DWARF debug information problems exist

• GNU compilers seem to do a much better job in general

• Linking applications with OMPD support varies by compiler

• Check the documentation

OpenMP Debugging Caveats

Debugging NVIDIA GPUs and CUDA with TotalView

totalview.io188 | TotalView by Perforce © Perforce Software, Inc.

• NVIDIA Tesla, Fermi, Kepler, Pascal, Volta, Turing, Ampere, Hopper

• NVIDIA CUDA 9.2, 10, 11 and 12

• With support for Unified Memory

• NVIDIA and Cray OpenACC support

• Features and capabilities include

• Support for dynamic parallelism

• Support for MPI based clusters and multi-card configurations

• Flexible Display and Navigation on the CUDA device

• Physical (device, SM, Warp, Lane)

• Logical (Grid, Block) tuples

• Support for types and separate memory address spaces

• GPU Status view reveals what is running where

TotalView for the NVIDIA ® GPU Accelerator

totalview.io189 | TotalView by Perforce © Perforce Software, Inc.

TotalView CUDA Debugging Model

totalview.io190 | TotalView by Perforce © Perforce Software, Inc.

• Hierarchical memory
• Local (thread)

• Local

• Register

• Shared (block)

• Global (GPU)
• Global

• Constant

• Texture

• System (host)

GPU Memory Hierarchy

totalview.io191 | TotalView by Perforce © Perforce Software, Inc.

Supported Type Storage (aka, Address Space) Qualifiers

@generic An offset within generic storage
@frame An offset within frame storage
@global An offset within global storage
@local An offset within local storage
@parameter An offset within parameter storage
@iparam Input parameter
@oparam Output parameter
@shared An offset within shared storage
@surface An offset within surface storage
@texsampler An offset within texture sampler storage
@texture An offset within texture storage
@rtvar Built-in runtime variables
@register A PTX register name
@sregister A PTX special register name

totalview.io192 | TotalView by Perforce © Perforce Software, Inc.

Control of Threads and Warps

• Warps advance synchronously
• They share a PC

• Single step operation advances all GPU threads in
the same warp

• Stepping over a __syncthreads() call will advance
all relevant threads

• To advance more than one warp
• Continue, possibly after setting a new breakpoint

• Select a line and “Run To”

NVIDIA GPU and CUDA Parallelization

• CUDA uses the single instruction multiple thread (SIMT) model of
parallelization.

• CUDA GPUs made up of many computing units called cores
• Cores includes an arithmetic logic unit (ALU) and a floating-point unit

(FPU).

• Cores collected into groups called streaming multiprocessors (SMs).

• Computing tasks are parallelized by breaking them into numerous
subtasks called threads.

• Threads are organized into blocks.

• Blocks are divided into warps whose size matches the number of cores
in an SM.

• Each warp gets assigned to a particular SM for execution. GPUs have
one or more SMs.

• SM control unit directs each of its cores to execute the same
instructions simultaneously for each thread in the assigned warp.

totalview.io193 | TotalView by Perforce © Perforce Software, Inc.

Compiling for CUDA debugging

When compiling an NVIDIA CUDA program for debugging, it is necessary to pass the -g -G
options to the nvcc compiler driver. These options disable most compiler optimization and
include symbolic debugging information in the driver executable file, making it possible to
debug the application.

% /usr/local/bin/nvcc -g -G -c tx_cuda_matmul.cu -o tx_cuda_matmul.o

% /usr/local/bin/nvcc -g -G -Xlinker=-R/usr/local/cuda/lib64 \
tx_cuda_matmul.o -o tx_cuda_matmul

% ./tx_cuda_matmul
A:
[0][0] 0.000000
...output deleted for brevity...
[1][1] 131.000000

totalview.io194 | TotalView by Perforce © Perforce Software, Inc.

Compiling for a specific GPU architecture (avoids JIT’ing from PTX)

194

Compiling for Ampere
-gencode arch=compute_80,code=sm_80

Compiling for Volta
-gencode arch=compute_70,code=sm_70

Compiling for Pascal
-gencode arch=compute_60,code=sm_60

Compiling for Kepler
-gencode arch=compute_35,code=sm_35

Compiling for Fermi and Tesla
-gencode arch=compute_20,code=sm_20 –gencode arch=compute_10,code=sm_10

Compiling for Fermi
-gencode arch=compute_20,code=sm_20

totalview.io195 | TotalView by Perforce © Perforce Software, Inc.

A TotalView Session with CUDA

A standard TotalView installation supports debugging CUDA applications running on both the
host and GPU processors.

TotalView dynamically detects a CUDA install on your system. To start the TotalView GUI or
CLI, provide the name of your CUDA host executable to the totalview or totalviewcli
command.

For example, to start the TotalView GUI on the sample program, use the following command:

% totalview tx_cuda_matmul

* This example is just a single node, no MPI application

totalview.io196 | TotalView by Perforce © Perforce Software, Inc.

Source View Opened on CUDA host code

totalview.io197 | TotalView by Perforce © Perforce Software, Inc.

Set Breakpoints in CUDA Kernel Code Before Launch

Hollow breakpoint
indicates a breakpoint
will be set when the
code is loaded onto the
GPU.

Set breakpoints in the
CUDA or OpenMP
TARGET region code
before you start the
process.

totalview.io198 | TotalView by Perforce © Perforce Software, Inc.

Stopped at a Breakpoint in CUDA Kernel Code

• Bold line numbers indicate
source code lines where
the compiler generated
code, which are good
places to set breakpoints

totalview.io199 | TotalView by Perforce © Perforce Software, Inc.

CUDA thread IDs and Coordinate Spaces

Host thread IDs have a positive thread ID (p1.1)

CUDA thread IDs have a negative thread ID (p1.-1)

totalview.io200 | TotalView by Perforce © Perforce Software, Inc.

GPU Physical and Logical Focus Toolbars

Logical toolbar displays the Block and Thread coordinates.

Physical toolbar displays the Device number, Streaming Multiprocessor, Warp and Lane.

To view a CUDA host thread, select a thread with a positive thread ID in the Process and
Threads view.

To view a CUDA GPU thread, select a thread with a negative thread ID, then use the GPU
focus controls in the logical or physical toolbar to focus on a specific GPU thread or lane.

totalview.io201 | TotalView by Perforce © Perforce Software, Inc.

• The identifier @local is a TotalView built-in type storage qualifier that tells the debugger the storage kind of "A" is
local storage.

• The debugger uses the storage qualifier to determine how to locate A in device memory

Displaying CUDA Program Variables
@local type qualifier
indicates that variable A
is in local storage.

“elements” is a pointer
to a float in @generic
storage.

totalview.io202 | TotalView by Perforce © Perforce Software, Inc.

• Single-step operations advance all the GPU
hardware lanes in the same warp

• Note that stepping operations Step and Next are
slow in GPU code; the following is faster…

• To advance the execution of more than one warp,
you may either:

• Set a breakpoint and continue the process, or

• Select a line number in the source pane and select
“Run To”.

Stepping GPU Code

Select the line to run to
and then click “Run To”
in the toolbar.

totalview.io205 | TotalView by Perforce © Perforce Software, Inc.

GPU Status View

Displays the state of all
the GPUs being debugged.

Fully configurable to allow
aggregating, sorting and
filtering based on physical
or logical attributes.

totalview.io206 | TotalView by Perforce © Perforce Software, Inc.

Enabling CUDA Memory Checker Feature

From the Program Session Dialog

From the Debug Menu

totalview.io207 | TotalView by Perforce © Perforce Software, Inc.

Demo

Debugging on Perlmutter

totalview.io209 | TotalView by Perforce © Perforce Software, Inc.

• If you bind processes to GPUs using srun, the debugger cannot determine which GPUs the processes are using

• SLURM’s use of Linux control groups make it impossible

• Workaround – Do not use the “--gpu-bind” option when debugging

• Watchpoints in GPU memory are not support on NVIDIA GPUs, but CPU watchpoints are supported

• On Perlmutter, the environment variable “TVD_DISABLE_CRAY=1” must be set to disable using Cray CTI

• “module load totalview” sets TVD_DISABLE_CRAY=1 on Perlmutter

• SSH is used to instantiate the TV/MRNet tree

• Requires passwordless SSH between nodes

Debugging on Perlmutter (Things to Know)

totalview.io210 | TotalView by Perforce © Perforce Software, Inc.

• Using SSH to between NERSC nodes can generate a lot of terminal output

• Each SSH generates a long “NOTICE TO USERS” message

• The messages can be suppressed by adding the following lines to your “$HOST/.ssh/config” file:

The "LogLevel quiet" option stops the "NOTICE TO USERS" messages

Host *

 LogLevel quiet

• The above is not necessary, but it does reduce terminal output

Debugging on Perlmutter (Things to Know)

totalview.io211 | TotalView by Perforce © Perforce Software, Inc.

• TotalView supports interactive and batch debugging sessions

• Interactive debugging sessions

• Use salloc to allocate interactive nodes

• Start TotalView on srun within the allocation

• Allows restarting srun multiple times within the same allocation

• Batch debugging sessions

• Use sbatch to submit a batch job

• Batch script uses tvconnect srun … to request a “reverse connect” to TotalView

• Start TotalView on a login node and accept the “reverse connect” request

• To restart srun multiple times, invoke tvconnect srun in a loop in the script

Debugging on Perlmutter (Supported Start-ups)

totalview.io212 | TotalView by Perforce © Perforce Software, Inc.

• Load the “totalview” module

• module load totalview

• Allocate some nodes, for example

• salloc -A ntrain7 -C gpu -N 2 -G 8 -t 60 -q interactive_ss11

• An interactive shell (bash, csh, etc.) will start inside the allocation

• Start totalview on srun, for example

• totalview –args srun -n 8 -G 8 -c 32 --cpu-bind=cores ./b.out

• Remember, “--gpu-bind” does not work, so do not use it while debugging

Debugging on Perlmutter (Interactive Start-up)

totalview.io213 | TotalView by Perforce © Perforce Software, Inc.

• Example batch script using tvconnect

#!/bin/bash -x
#SBATCH -A nvendor
#SBATCH -C gpu
#SBATCH -N 2
#SBATCH -G 8
#SBATCH -t 30
#SBATCH --qos=debug

module load totalview
tvconnect srun b.out

• When the batch script starts, tvconnect blocks until a totalview accepts the reverse connect request

• On the login node, load the “totalview” module and start totalview

module load totalview
totalview

Debugging on Perlmutter (Batch Start-up)

totalview.io214 | TotalView by Perforce © Perforce Software, Inc.

• TotalView will “Listen For Reverse Connections” by
default, but make sure the option is enabled

• When the batch script executes the tvconnect
command, TotalView will post a dialog

• Select “Yes” to connect TotalView
to the batch job

Debugging on Perlmutter (Batch Start-up)

totalview.io215 | TotalView by Perforce © Perforce Software, Inc.

• Once TotalView starts-up on srun, the following steps are common to interactive / batch debugging

• Typically

• Select “Go” to start srun

• srun will launch the parallel program

• TotalView detects the parallel program launch and attaches to the MPI processes

• When the jobs goes parallel,
TotalView will post a dialog

Debugging on Perlmutter (Common to Interactive/Batch)

totalview.io216 | TotalView by Perforce © Perforce Software, Inc.

• Click “Yes” to stop the parallel job,
which is useful if you want to

• Navigate to source files / functions

• Set breakpoints

• Click “No” to allow the job to run,
which is useful if you

• Have saved breakpoints from a
previous session

• Know the program is going to crash
(SEGV, etc.)

Stop the job when it goes parallel?

totalview.io217 | TotalView by Perforce © Perforce Software, Inc.

TotalView will focus on main() in rank 0

totalview.io218 | TotalView by Perforce © Perforce Software, Inc.

Navigate to a file or function you want to debug

totalview.io219 | TotalView by Perforce © Perforce Software, Inc.

• Line numbers indicate if there’s code at that line

• Pale line numbers indicate no code (yet)

• Bold line numbers indicate code

• CUDA code is dynamically loaded at runtime, so
TotalView does not have any debug information
until the CUDA kernel is launched

• Select a line number in the CUDA kernel that will
have CUDA code loaded

• Hollow breakpoint markers indicate no code yet

• Solid breakpoint markers indicate code

• Source line information for a source file is unified
for both GPU and CPU code

Find the CUDA kernel and select a line number to plant a breakpoint

totalview.io220 | TotalView by Perforce © Perforce Software, Inc.

Click the “Go” button to run the application and launch the kernel

totalview.io221 | TotalView by Perforce © Perforce Software, Inc.

Stopped at a breakpoint in the CUDA kernel

totalview.io222 | TotalView by Perforce © Perforce Software, Inc.

• Line number information for the GPU code is
unified with the CPU code

• The hollow breakpoint marker turns solid,
indicating that there is now code at that line

• The PC arrow and highlighted source line
indicates where the warp is stopped

Source view stopped in a CUDA kernel

totalview.io223 | TotalView by Perforce © Perforce Software, Inc.

• “GPU (Logical)” control displays and allows focusing on a specific Block and Thread

• “GPU (Physical)” control displays and allows focusing on a specific Device, SM, Warp, and Lane

GPU thread focus and navigation controls

totalview.io224 | TotalView by Perforce © Perforce Software, Inc.

CUDA stack backtrace and local variables

• Call Stack

• Open the drawer for details

• Local Variables

totalview.io225 | TotalView by Perforce © Perforce Software, Inc.

• The “GPU Status” view displays an aggregated
overview of one or more of the GPUs in the whole
job, in a single process, or on a single GPU

• The “GPU Status” view controls allow

• Selecting the set of properties to display

• Aggregation by the selected properties

• Sorting by the selected properties

• Creating compound filters to include/exclude
properties that are equal, not equal, greater, etc.

• Allows you to get a “big picture” of the state of one
or more of the GPUs in your job

GPU Status view

totalview.io226 | TotalView by Perforce © Perforce Software, Inc.

Demo

Batch Debugging with TVScript

totalview.io233 | TotalView by Perforce © Perforce Software, Inc.

• A straightforward language for unattended and/or batch debugging with TotalView and/or MemoryScape

• Usable whenever jobs need to be submitted or batched

• Can be used for automation

• A more powerful version of printf, no recompilation necessary between runs

• Schedule automated debug runs with cron jobs

• Expand its capabilities using TCL

tvscript

totalview.io234 | TotalView by Perforce © Perforce Software, Inc.

tvscript

tvscript [options] [filename] [-a program_args]

options

TotalView and tvscript command-line options.

filename

The program being debugged.

-a program_args

Program arguments.

totalview.io235 | TotalView by Perforce © Perforce Software, Inc.

tvscript

• All of the following information is provided by default for each print

• Process id

• Thread id

• Rank

• Timestamp

• Event/Action description

• A single output file is written containing all of the information regardless of the number of
processes/threads being debugged

totalview.io236 | TotalView by Perforce © Perforce Software, Inc.

Supported tvscript events

totalview.io237 | TotalView by Perforce © Perforce Software, Inc.

Supported tvscript events

totalview.io238 | TotalView by Perforce © Perforce Software, Inc.

Supported tvscript actions

totalview.io239 | TotalView by Perforce © Perforce Software, Inc.

Supported tvscript actions

totalview.io240 | TotalView by Perforce © Perforce Software, Inc.

tvscript examples

tvscript \
-create_actionpoint "method1=>display_backtrace -show_arguments" \
-create_actionpoint "method2#37=>display_backtrace \
 -show_locals -level 1" \
-event_action "error=>display_backtrace -show_arguments \
 -show_locals" \
-display_specifiers "noshow_pid,noshow_tid" \
-maxruntime "00:00:30" \
~/work/filterapp /filterapp -a 20

tvscript -mpi "Open MPI" -tasks 4 \
-create_actionpoint \
"hello.c#14=>display_backtrace" \
~/tests/MPI_hello

Simple example

MPI example

totalview.io241 | TotalView by Perforce © Perforce Software, Inc.

tvscript -maxruntime "00:00:30" \

-event_action "any_event=save_memory_debugging_file" \

-guard_blocks -hoard_freed_memory -detect_leaks \

~/work/filterapp -a 20

tvscript examples

Memory Debugging example

ReplayEngine example
tvscript \

-create_actionpoint "main=>enable_reverse_debugging" \

-event_action "stopped_at_end=>save_replay_recording_file" \

filterapp

totalview.io242 | TotalView by Perforce © Perforce Software, Inc.

• TVScript demo (tvscript –script_file file tvscript_example.tvd ex2)

Demo

Common TotalView Usage Hints

totalview.io250 | TotalView by Perforce © Perforce Software, Inc.

• TotalView can’t find the program source

• Did you compile with -g ?

• How to adjust the TotalView search paths? Preferences -> Search Path

• Python Debugging

• Making sure proper system debug packages are installed for Python

• X11 forwarding performance

• If users are forwarding X11 displays through ssh TotalView UI performance can be bad

• Understanding different ways to stop program execution with TotalView Action Points

• Using a watchpoint on a local variable

• Focus

• Diving on a variable that is no longer in scope. Check the Local Variables window for in scope variables

• TotalView doesn’t change focus to the thread hitting a breakpoint. Set Action Point Preferences to “Automatically focus on
threads/processes at breakpoint”

Common TotalView Usage Hints

totalview.io251 | TotalView by Perforce © Perforce Software, Inc.

• MPI Debugging

• Differences in launching MPI job from within the TotalView UI vs the command line.

• TotalView runs an MPI program without stopping. Set the Parallel Preferences to “Ask What To Do” in After Attach Behavior

• Using wrong attributes in processes and threads view

• Reverse Debugging

• Running out of memory by not setting the maximum memory allocated to ReplayEngine

• Defer turning on reverse debugging until later in program execution to avoid slow initialization phases

• Adjust reverse debugging circular buffer size to reduce resources

• Memory Debugging
• Starting with All memory debugging options enabled rather than Low

• Not setting a size restriction for Red Zones

• Issues with getting memory debugging turned on in an MPI job. May have to set LD_PRELOAD environment variable or worst
case, prelink HIA

Common TotalView Usage Hints (cont.)

totalview.io252 | TotalView by Perforce © Perforce Software, Inc.

• Differences in functionality between new UI and classic UI
• How to switch between them. Preferences -> Display or totalview –newUI and totalview -oldUI

• Where the gaps still are in functionality

• Reverse Connect with tvconnect
• When I use Reverse Connect I get the following obscure message: myProgram is an invalid or incompatible executable file

format for the target platform

• The message indicates an incompatible file format but most often this occurs if the program provided to tvconnect for
TotalView to debug cannot be found. The easiest way to resolve problem is to provide the full path to the target application,
e.g., tvconnect /home/usr/myProgram

• How do I get help?
• How to submit a support ticket? techsupport@roguewave.com

• Where is TV documentation (locally and on the internet). https://help.totalview.io/

• Are there videos I can watch to learn how to use TotalView? https://totalview.io/support/video-tutorials

Common TotalView Usage Hints (cont.)

https://help.totalview.io/
https://totalview.io/support/video-tutorials

TotalView Resources and Documentation

totalview.io256 | TotalView by Perforce © Perforce Software, Inc.

• TotalView website:
https://totalview.io

• TotalView documentation:

• https://help.totalview.io

• User Guides: Debugging, Memory Debugging and Reverse
Debugging

• Reference Guides: Using the CLI, Transformations, Running
TotalView

• Blog:
https://totalview.io/blog

• Video Tutorials:
https://totalview.io/support/video-tutorials

TotalView Resources and Documentation

https://totalview.io/
https://help.totalview.io/
https://totalview.io/blog
https://totalview.io/support/video-tutorials

Q&A

totalview.io258 | TotalView by Perforce © Perforce Software, Inc.

• Bill Burns (Senior Director of Software Engineering and Product Manager)

 bburns@perforce.com

• John DelSignore (TotalView Chief Architect)

 jdelsignore@perforce.com

• Scot Halverson (NVIDIA Solutions Architect)

 shalverson@nvidia.com

• Peter Thompson (Senior Support Engineer)

 pthompson@perforce.com

• Bruce Ryan (Senior Account Executive)

 bryan@perforce.com

• Ken Hill (Senior Sales Engineer)

 khill@perforce.com

Contact us

mailto:bburns@perforce.com
mailto:jdelsignore@perforce.com
mailto:shalverson@nvidia.com
mailto:pthompson@perforce.com
mailto:bryan@perforce.com
mailto:khill@perforce.com

