(

\/9 JOINT GENOME INSTITUTE

.\) A DOE OFFICE OF SCIENCE USER FACILITY

Bioinformatics: A Case Study

NERSC GPUs for Science Day

Bryce Foster
2019-07-02

DOE Joint Genome Institute _IGIQ/\y

JOINT GENOME INSTITUTE

JOINT GENOME INSTITUTE

ATCGCTCGACTATCGACGAT

GTCACGATGTGCACGATC
TCCACTGATCGATGTGCAT
CATACGTAGCCGTACTCGA
TATGCGACTGCACTATACG
ATCGTAGCTGACTGCACTA
ACTGCACTATGCTACTGCA
AGCCATGCGTATGCCAT
GACTCGTCATCTGACTCG
TACGTAGCCGTACTCGACA

Bioinformatics Analysis Software JG[X

JOINT GENOME INSTITUTE

ATCGCTCCACTATCGACGAT e Typical bioinformatics algorithm
GCTCACGATGTGCACGATC

TCGACTGATCGATGTGCAT
\ . V11089

— Read large text file from disk
e Megabytes to 100 gigabytes+

; W \ \ B A &’,/,;" s A — Process data on CPUs and in memory
" f'@{; B g g e e Take advantage of multi-CPUs
‘ L — Write smaller files back to disk
| Annotation
\ 7 e Thousands of 3rd party tools
Assembly | @ python
. o
Alignment ==

b

PL

Java

(.a
Our Strategy JGI 2/\

Convert an algorithm from BBTools (Java) into C++
Compile code with GNU C++ compiler

Get code to compile with NVidia’s compiler

Check the answers

Profile code

— Where are the bottlenecks
— Is it taking advantage of Nvidia hardware?

Add OpenACC pragma statements (NVidia lib)
Compare accelerated versus non-accelerated runtimes

A
<~ NVIDIA.

Lo T R VR VR R TR T T U S

-

I
JIIIY

Y
Our Code: Seal (C++) JGIX

Seal is an alignment algorithm to compare the similarity between 2 genomic sequences

Read in 1st genome [o
- sequence file —+: Al e et <« !
intg memory | the sequence file Loop \

Read in 2nd genome | _ Add long intinto a

—>- sequence file — 1 Convert to 64bit |_5, | hashmap :
into memory | long int (or lookup in hashmap |

| for second genome) '

3 Report number of bases shared between 1st
and 2nd genome sequence

Sequence = “...GTTGCATGCAATCCGCGCGCAAGAACTGGTTCTGGGGCAACGCAGGTCTATCTGTC...”
kmer = "CCGCGCGCAAGAACTGGTTCTGGGGCAACGC";

Binary = 01011001100110010000100000011110101111011110101010010000011001
Long Int = 1614050117235155993

5

Y
Our Results for Seal JGIX

seal-bloom timing

GNU G++ 4.8

p—

Compile Using NVidia’s Compiler
options

Y
Our Results for Seal JGIX

seal-bloom timing

GNU G++ 4.8

Using NVidia’s Compiler

G++ G++-03

/..?
Our Results for Seal JGIX

seal-bloom timing

GNU G++ 4.8 PGC++ 19.1

Our Results for Seal JGI(%)

JOINT GENOME INSTITUTE

seal-bloom timing

GNU G++ 4.8 PGC++ 19.1 PGC++ 19.1

G++ G++-03 PGC++ PGC++-03 PGC++ -TA=TESLA PGC++ -TA=TESLA -03

%

@ (]
R sSacaltlE s EL s lA:

NVIDIA Visual Profiler

§ *NewSession1 2 | § *seal-bloom-gpu-nvtx.prof $2 = g8
ps 2.§s 5.5 7.‘55 1(?5 12:55 1§s 13
[=] Process "seal-bloom-gpu-n... [
[=| Thread 305136
I l (1111 O S VI R ANY A I (11 A1 e AT AT AN |
OpenACC i i
I | S 1 AT Y WA | \ I 11 A A1 DAY AR |
- Driver API | [LA T o A AN ALY 1 L1 A S AT Y AAR[|
.l d_fa 1 1 11
S — [[P IO e Imestmaiteni
| Defeuttomain .+ r [! [[| code
[pringovervoad | |
[= [0] Tesla V100-SXM2-16GB
[=| Context 1 (CUDA)
= MemCpy (HtoD) I | VIl AT A AN A I (V[A1 A AT DY DRI |
- 7 MemCpy (DtoH) | 11 11 VA1 AT IAAR] | 1] 1 o A1 A AN |
=I Compute I VI 1 S VAT WY WA \ 1 1 1 AT WAA] | . T
7 51.5% s kner.. [AT AT AL O Running on NVidia
= SF 48.3% count_km... | | [[l 1] | TeSIa GPU
- 0.1% count kmer... | ([T I S AT W AAT AN
-7 0.1% load kmers... \ T ST I O AN 11T AT AR
L 57 0.3% memset (0) | 1R T N ANY WA | | 1 I AT AT WMAT |
[l Analysis 82 GPU Details (Summary) CPU Details OpenACC Details OpenMP Details Console Settings w. = 0 ! Properties 2 =g
=] | (2] 4 Results s
=l = U Profiling Overhead
1. CUDA Application Analysis ¥ Duration
< < y . ST Session 12.44842...
The guided analysis system walks you through e Seal's code profile from NVidia’s NVProf tool Overhead 21.63492..
the various analysis stages to help you . . ¥ Number of Intervals
understand the optimization opportunities in () The GPU |S used but not heaVIIy Compiler(JIT) Overhead 0
your application. Once you become familiar . o . . Activity Buffer Flush Over... 2
with the optimization process, you can explore [) Repeated deV|Ce |n|t|a|lzat|0n CUPTI Instrumentation O... 83
the individual analysis stages in an unguided . . . CUPTI Resource Overhead 4
mode. When optimizing your application it is () Not enough experlence Worklng on GPUS and C++ IS Total number of Intervals 89
important to fully utilize the compute and data Min Time 37 ns
movement capabilities of the GPU. To do this rU Sty Max Time 13.37275...
you should look at your application's overall Average Time 243.089 ps
GPU usage as well as the performance of

individual kernels.

- . \7
JNI Optimization JGIX

e BBTools is Java code but there is C code linked to the Java code using
JNI (Java Native Interface)
e Added OpenACC pragma statements

— Had to refactor C code to be thread-friendly
— Did not successfully accelerate code

e got wrong answers

e Slower than CPU version (GPU initialization)

JNI
C Code
Java Code Smlth-Waterman
algorithm for
Read Sequence 9ol
aligning genome
sequences

< NVIDIA

JNI

Loop 1,000,000x

Java Code

Process Results

| peeoveres J4

Slow code

- “String Foo = foo + bar;” vs “String foo.append(bar);”
- “String foobar.toupper();”

Reviewing and profiling code found some easy to fix CPU optimizations
The GNU C++ compiler does not optimize by default (-O3)

GPUs do not support strings

Could not get a GPU enabled hashmap class working

Difficult to compile 3rd party code

Had to re-architect code to be able to take advantage of GPU
acceleration

n ’..?
Questions? JGIX
I M“STnc“E vou e Comments from JGI's NVidia
_— A -~

Hackathon teams

- — The NVidia hackathon was valuable
g ' ‘ — Refreshed software engineering skills
— Got out of our comfort zone
— Learned about GPU programming and

GPU technologies

