
Bioinformatics: A Case Study

NERSC GPUs for Science Day
Bryce Foster
2019-07-02



DOE Joint Genome Institute

2



Bioinformatics Analysis Software

3

Alignment

Assembly

Annotation

● Typical bioinformatics algorithm
– Read large text file from disk

● Megabytes to 100 gigabytes+
– Process data on CPUs and in memory

● Take advantage of multi-CPUs
– Write smaller files back to disk

● Thousands of 3rd party tools



Our Strategy

● Convert an algorithm from BBTools (Java) into C++
● Compile code with GNU C++ compiler
● Get code to compile with NVidia’s compiler
● Check the answers
● Profile code

– Where are the bottlenecks
– Is it taking advantage of Nvidia hardware?

● Add OpenACC pragma statements (NVidia lib)
● Compare accelerated versus non-accelerated runtimes

4



Our Code: Seal (C++)

5

Read in 1st genome 
sequence file
into memory

Sequence = “...GTTGCATGCAATCCGCGCGCAAGAACTGGTTCTGGGGCAACGCAGGTCTATCTGTC…”
kmer = "CCGCGCGCAAGAACTGGTTCTGGGGCAACGC";
Binary = 01011001100110010000100000011110101111011110101010010000011001 
Long Int = 1614050117235155993

Seal is an alignment algorithm to compare the similarity between 2 genomic sequences

For each kmer in 
the sequence file

Convert to 64bit 
long int

Add long int into a 
hashmap
(or lookup in hashmap 
for second genome)

Loop

Read in 2nd genome 
sequence file
into memory

Report number of bases shared between 1st 
and 2nd genome sequence



Our Results for Seal

6

GNU G++ 4.8 PGC++ 19.1 PGC++ 19.1

GPU Acceleration ResultsUsing NVidia’s CompilerCompile 
options



Our Results for Seal

7

GNU G++ 4.8 PGC++ 19.1 PGC++ 19.1

GPU Acceleration ResultsUsing NVidia’s Compiler-O3



Our Results for Seal

8

GNU G++ 4.8 PGC++ 19.1 PGC++ 19.1

GPU Acceleration Results



Our Results for Seal

9

GNU G++ 4.8 PGC++ 19.1 PGC++ 19.1



Seal Profile (Nvprof)

10

File I/O && inefficient 
code

Running on NVidia 
Tesla GPU

● Seal’s  code profile from NVidia’s NVProf tool
● The GPU is used but not heavily
● Repeated device initialization
● Not enough experience working on GPUs and C++ is 

rusty



JNI Optimization

● BBTools is Java code but there is C code linked to the Java code using 
JNI (Java Native Interface)

● Added OpenACC pragma statements 
– Had to refactor C code to be thread-friendly
– Did not successfully accelerate code

● got wrong answers
● Slower than CPU version (GPU initialization)

11

Java Code
Read Sequence

C Code
Smith-Waterman 
algorithm for 
aligning genome 
sequences

Java Code
Process Results

JNI JNI

Loop 1,000,000x



Discoveries

● Slow code 
– “String Foo = foo + bar;” vs “String foo.append(bar);”
– “String foobar.toupper();”

● Reviewing and profiling code found some easy to fix CPU optimizations
● The GNU C++ compiler does not optimize by default (-O3) 
● GPUs do not support strings
● Could not get a GPU enabled hashmap class working
● Difficult to compile 3rd party code
● Had to re-architect code to be able to take advantage of GPU 

acceleration

12



Questions?

13

● Comments from JGI’s NVidia 
Hackathon teams

– The NVidia hackathon was valuable
– Refreshed software engineering skills
– Got out of our comfort zone
– Learned about GPU programming and 

GPU technologies


