Faster! Faster! Highlights in Particle Accelerator Research @ NERSC

Jean-Luc Vay* Advanced Modeling Program (Head) Accelerator Technology and Applied Physics Division

NERSC@50 Seminar Series August 12, 2024

ACCELERATOR TECHNOLOGY & ATAP

*Thanks for material provided by/borrowed from A. Formenti, M. Garten, C. Geddes, A. Huebl, R. Lehe & C. Ng

Faster! Faster!

A parallel between particle acceleration and computing

Particle accelerators

Goals (some):

- o as many particles as possible
- o going as fast as possible
- \circ in an orderly fashion
- $\circ~$ as cheaply as possible

Largest accelerators

Name	Cost (\$B)	Power consumption (MW)
LHC (CERN)	~5	~120
FCC-ee* (CERN)	12-18	~290
FCC-hh* (CERN)	30-50	~560
HE-ILC* (Japan)	18-30	~400
CEPC* (China)	12-18	~340
*Planned		

Supercomputers

- Goals (some):
 - o as many calculations as possible
 - o performed as fast as possible
 - o in an orderly fashion
 - o as cheaply as possible

Largest supercomputers

Name	Cost (\$B)	Power consumption (MW)
Perlmutter (NERSC)	~0.146**	~3
Frontier (OLCF)	~0.6	~23
Aurora (ALCF)	~0.5	~39
Fugaku (Japan)	~1.2	~30
El Capitan (LLNL)	~0.6	~30

**Construction + operation

→ can be very expensive and power consumption has become a limiting factor

Quick (very incomplete) intro on particle accelerators & colliders

Particle Accelerators are Essential Tools in Modern Life

Medicine

- ~9,000 medical accelerators in operation worldwide
- 10's of millions of patients treated/yr
- 50 medical isotopes, routinely produced with accelerators

Industry

~20,000 industrial accelerators in use

٠

- Semiconductor manufacturing
- cross-linking/ polymerization
- Sterilization/ irradiation
- Welding/cutting
- Annual value of all products that use accel. Tech.: \$500B

National Security

- Cargo scanning
- Active interrogation
- **Stockpile stewardship**: materials characterization, radiography, support of nonproliferation

Discovery Science

- ~**30% of Nobel Prizes** in Physics since 1939 enabled by accelerators
- 4 of last 14 Nobel Prizes in Chemistry for research utilizing accelerator facilities

Particle accelerators: the basics

Particle accelerators: building blocks & typical configurations

Charged particles: e⁻, e⁺, p, p
, Auⁿ⁺, ...

Electric fields to accelerate:

Magnetic fields to bend:

Each has pros/cons. Choice based on needs, size, cost, etc.

Keeping the beam together

- Accelerating one particle at a time is one thing. Accelerating many particles in a beam and keeping them together is another.
- There are two main causes for the beam to expand:
 - Velocity spread ("temperature")

a "cold" beam has no velocity spread

• Repulsion from particles with same charge

➔ need for periodic confinement

Transversally, it is usually done using Focusing-Defocusing (FODO) quadrupole

Particle accelerators started small

E. Lawrence founded RadLab at UC Berkeley in 1931 *** where he pioneered "team science" aka "big science" *** for particle accelerator research & applications

Particle accelerators can be very large & expensive

Example 1: Large Hadron Collider (circular accelerator)

- Circumference: ~27 kms
- Construction cost: ~\$5B
- Consumption: ~200MW (total CERN complex)

Particle accelerators can be very large & expensive

Example 2: LCLS-II light source (linear accelerator)

SLAC

Why are particle accelerators so large?

Particle accelerators typically involve a metallic pipe with vacuum inside.

⇒ breakdown occurs if electric field is too high!

Possible solution to reach higher accelerating fields? \Rightarrow plasmas.

Plasma as a solution to shrink plasma accelerators

Plasma as a solution to shrink plasma accelerators

The separation of electrons and protons creates electric fields **orders of magnitude larger** than in conventional particle accelerators

→ opportunity to accelerate (and guide) charged particle beams over much shorter distances

T. Tajima & J. M. Dawson, "Laser Electron Accelerator", Phys. Rev. Lett. 43, 267 (1979)

Particle Accelerators can be Very Large - Can We Shrink Them?

T. Tajima & J. M. Dawson, "Laser Electron Accelerator", Phys. Rev. Lett. 43, 267 (1979)

*T. Roser, et al, "On the feasibility of future colliders: report of the Snowmass'21 Implementation Task Force", arXiv 2208.06030 (2023)

Accelerator Modeling is Very Complex

Involves the modeling of the intricate interactions of

- relativistic particles: beams, plasmas, halo, stray electrons
- EM fields: accelerating/focusing fields, beam self-fields, laser/plasma fields
- structures: metals, dielectrics.
- periodic structures & motion: resonant coupling, instabilities.

Typical computer representations based on the Particle-In-Cell method:

- particles: macro particles representing each 1-10⁶ particles
- fields: electromagnetic, on a grid
- structures: surfaces interacting with grid and macroparticles

Many space- and time scales to cover:

- from μm (e.g., plasma structures, e⁻-surface interactions) to km (e.g., LHC)
- from **ns** (beam passing one element) **to seconds or more** (beam lifetime)

⇒ needs best algorithms on largest & fastest computers

electromagnetic (EM) fields on a grid

Modeling of Particle Accelerators @ NERSC: Examples

TIT

NERSC simulations unveiled the physics of narrow energy spread in high-gradient plasma-based particle accelerators transforming the field

Simulations provided key support to 2004 experimental observation at BELLA of beams with particles near a single energy – critical to applications –

- BELLA (LBNL)
- Code: Vorpal
- NERSC computer: Seaborg
- Qualitative picture: 16-64 cores
- Accurate 3D trapping (INCITE): 1024 cores

Geddes et al, Nature 431, 540 (2004); SciDAC Review 13, 13 (2009)

2009: Simulations uncover default of fabrication

2009: Simulations + UQ uncovered reasons for acceleration cavity measurements that were off specs & observed Beam Breakup (BBU) instability in operation
→ the 1 meter cavity was 8mm shorter than designed

Cavity Shape - Ideal in silver vs deformed in gold

- CEBAF (JLAB)
- Code: ACE3P
- NERSC computer: Franklin
- Individual runs used 256 cores
- 37k CPU hours needed to obtain solve the inverse problem from measured data & recover the deformed cavity

2010: Simulation of electron cloud (e-cloud) effects in CERN SPS

- SPS (CERN); circumference=6.9km
- 3 batches of 72 bunches/batch (=216 bunches)
- 1000 turns (w/ 10 stations/turn)
- Code: Warp; # cores: 9,600
- NERSC computer: Franklin

Mesh refinement enabled simulations in reasonable time (~10h) SciDAC Scientific Discovery through Advanced Computing BERKELEY LAB

2013: simulations started to use the physical number of particles 2017: application to modeling of LCLS with excellent agreement w/ expt

Using (for the first time) the real number of electrons matters to get the shot noise right!

J. Qiang et al., Phys. Rev. Accel. Beams 17, 030701 (2013)

- LCLS (SLAC);
- # cores: 2,048 for 14h
- NERSC computers: Hopper

Start-to-end, one-to-one modeling reproduces microbunching in the LCLS X-ray FEL.

J. Qiang et al., Phys. Rev. Accel. Beams 20, 054402 (2017).

- LCLS (SLAC);
- # cores: 2,048 for 6h
- NERSC computers: Edison

2016: Modeling of (unwanted) dark currents in LCLS-II cryomodule

- LCLS-II (SLAC)
- Code: ACE3P (Track3P)
- NERSC computer: Edison
- Individual runs used 240 cores (10 nodes)

2007-2017:~2 orders of magnitude speedup in cryomodule modeling

Higher-order modes in TESLA cryomodules 1 hour per mode using 1500 cores on Seaborg in 2007 < 1 minute per mode using 960 cores on Edison in 2017 Speedup from advances in hardware and algorithms Seaborg NERSC <u>\$\$\$\$3*~*}}\$\$\$\$\$333***}}}6666666**}}6666666**}}</u> <u>}}}}</u>

Helping the transition to Exascale with NESAP

Getting Started in NESAP

NERSC App Readiness Team

NESAP PI Briefing September 15, 2014

20 NESAP Codes

U.S. DEPARTMENT OF

ASCR (2) Almgren (LBNL) – BoxLib AMR Framework used in combustion, astrophysics

Trebotich (LBNL) – **Chombo-crunch** for subsurface flow

> Office of Science

BES (5) Kent (ORNL) – Quantum Espresso Deslippe (NERSC) – BerkeleyGW Chelikowsky (UT) – PARSEC for excited state materials Bylaska (PNNL) – NWChem Newman (LBNL) – EMGeo for geophysical modeling of Earth BER (5) Smith (ORNL) – Gromacs Molecular Dynamics Yelick (LBNL) – Meraculous genomics Ringler (LANL) – MPAS-O global ocean modeling Johansen (LBNL) – ACME global climate

HEP (3) Vay (LBNL) – WARP & IMPACTaccelerator modeling Toussaint (U Arizona) – MILC Lattice QCD Habib (ANL) – HACC for *n*-Body cosmology

NP (3) Maris (U. Iowa) – MFDn *ab initio* nuclear structure Joo (JLAB) – Chroma Lattice QCD Christ/Karsch (Columbia/BNL) – DWF/HISQ Lattice QCD FES (2)

Jardin (PPPL) – **M3D** continuum plasma physics Chang (PPPL) – **XGC1** PIC plasma

NESAP Postdocs

Taylor Barnes Quantum ESPRESSO

Mathieu Lobet WARP

Boxlib

Tuomas Koskela XGC1

Andrey Ovsyannikov Chombo-Crunch

Tareq Malas EMGeo

U.S. DEPARTMENT OF Office of Science

2016: Performance of optimized vs original code demonstrated 3-8X speedup for Warp

U.S. DOE Exascale Computing Initiative (ECI) – 2016-2023 WarpX among 21 applications selected to cover broad range of science

COMPUTING

PROJECT

Years of collaboration with NERSC + NESAP were key to selection

Challenge of the ECP WarpX Project

Go from modeling 1 or 2 plasma stages to tens of stages in 3D from first principles for plasma collider R&D and design

→ advanced algorithms on fastest/largest supercomputers

Key partnership with AMReX

AMReX

Welcome to NESAP for Perlmutter

NERSC March 28/29, 2019

(liaison) **Kevin Gott** NERSC (staff) WarpX

2023-2024

WarpX

2019-2021

Michael Rowan

NERSC (postdoc)

Muhammad Haseeb NERSC (postdoc) WarpX

NESAP led to significant WarpX FOM increase on Perlmutter also increase efficiency of dynamic load balancing & binary collisions kernel

FOM ~ # particles/runtime

Date	Machine	Nodes	FOM	
3/19	Cori (Warp)	6625	2.2e10	
3/19	Edison	4694	6.7e10 🗖	Ă
3/19	Cori	6625	1.0e11 🥰	ы С
7/21	Perlmutter	960	1.1e12 🖊	

3.8x speedup w/ adaptive load balancing

Science

particles/cell Office of

Z-order space filling curve

Domain decomposition

4x speedup of Coulomb collision module

New kernel:

MultiParticleContainer::doCollisions() Avg. per step = 0.1375590809 s Total Time : 14.58777054

WarpX dev branch:

MultiParticleContainer::doCollisions() Avg. per step = 0.6979252147 Total Time : 70.43095279

Applied to other binary collisions modules in WarpX (nuclear fusion, DSMC, etc.)

ECP WarpX team benefitted from NESAP to win 22 Gordon Bell Prize

April-July 2022: WarpX on world's largest HPCs

L. Fedeli, A. Huebl et al., Gordon Bell Prize Winner in SC'22, 2022

Modeling of novel plasma e- beam injection scheme

- 3 levels of parallelism, scalable & portable
- adaptive mesh refinement
- efficient dynamic loal balancing

Science

Figure-of-Merit: weighted updates / sec

Date	Code	Machine	$N_c/Node$	Nodes	FOM		
3/19	Warp	Cori	0.4e7	6625	2.2e10		
3/19	WarpX	Cori	0.4e7	6625	1.0e11		
6/19	WarpX	Summit	2.8e7	1000	7.8e11		
9/19	WarpX	Summit	2.3e7	2560	6.8e11		
1/20	WarpX	Summit	2.3e7	2560	1.0e12		
2/20	WarpX	Summit	2.5e7	4263	1.2e12		
6/20	WarpX	Summit	2.0e7	4263	1.4e12		
7/20	WarpX	Summit	2.0e8	4263	2.5e12	\mathbf{X}	\times
3/21	WarpX	Summit	2.0e8	4263	2.9e12	$\overline{\mathbf{O}}$	$\overline{\mathbf{C}}$
6/21	WarpX	Summit	2.0e8	4263	2.7e12	\leq	
7/21	WarpX	Perlmutter	2.7e8	960	1.1e12		\bigcirc
12/21	WarpX	Summit	2.0e8	4263	3.3e12		LO I
4/22	WarpX	Perlmutter	4.0e8	928	1.0e12		
4/22	WarpX	Perlmutter [†]	4.0e8	928	1.4e12		
4/22	WarpX	Summit	2.0e8	4263	3.4e12		
4/22	WarpX	Fugaku†	3.1e6	98304	8.1e12		
6/22	WarpX	Perlmutter	4.4e8	1088	1.0e12		
7/22	WarpX	Fugaku	3.1e6	98304	2.2e12		
7/22	WarpX	Fugaku†	3.1e6	152064	9.3e12		
7/22	WarpX	Frontier	8.1e8	8 5 7 6	1.1e13		

Looking forward: more HPC + superfacilities (aka IRI) + workflows

Simulations of Advanced Laser-Plasma Ion Acceleration Mechanisms

3D WarpX simulations supported commissioning of BELLA iP2 beamline in 2022

https://newscenter.lbl.gov/2022/12/01/laser-upgrade-research-possibilities/

- BELLA iP2 (LBNL)
- Code: WarpX
- NERSC computer: Perlmutter
- # nodes: 100s

Magnetic Vortex Acceleration (MVA)

S. Hakimi et al., Phys. Plasmas 29, 083102 (2022)

Simulations demonstrating Boosting of Intense Ion Beam Energies using New Concept with Hollow-Channel Laser-Plasma Stages

- Code: WarpX
- NERSC computer: Perlmutter
- # nodes: 768 for 8.5h

M. Garten et al., Phys. Rev. Research 6, 033148 (2024)

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY 38

Key beam quality parameters are conserved

Charge, energy spread, and emittance are conserved well

State-of-the-art PW laser facility parameters are sufficient

Exploiting High-Quality HPC Data for ML-Boosted Collider Design

Start-to-end modeling of chain of plasma accelerator stages for colliders can be very expensive with PIC.

Under some conditions (low beam charge, repetition of similar stages), ML surrogate can be trained & replace PIC.

LDRD in collaboration with NERSC to build Superfacility prototype

New NESAP project on Integrated Plasma Simulation Workflows

My NERSC | A-Z Index | 🔀 Share | 🛐 Follow

search ...

Login

Powering Scientific Discovery for 50 Years

FOR USERS R & D EVENTS LIVE STATUS SCIENCE SYSTEMS HOME ABOUT NEWS

R&D

Home » R & D » NESAP » NESAP Pathfinding Projects for 2024

Superfacility Data Analytics Quantum@NERSC

NESAP

NESAP Pathfinding Projects for 2024

NESAP Postdoctoral Fellowships

NESAP Postdocs

Admiral Grace Hopper Fellowship

Previous NESAP Projects

Advanced Technologies Research at NERSC

Storage and I/O Technologies NERSC proxy suite

Workload Analysis

2024 NESAP PATHEINDING TEAMS

Project NamePI NamePI InstitutionScience DomainProject proposal salient feature/summaryOceananigansSimone SilvestriMITClimateJulia + LLVM toolchain at scale multi-gpuERF-XAnn AlmgrenLBNLWeatherAMReX toolchain at scaleU.S. CMS SCO: HL-LHCDavid SperkaBU/FermilabHEPAl integration with CMS workflowMetaHipMer & UPC++/GASNetRob EganJGI/LBNLBio SciencesGASNet toolchain at scaleSeparationMLPing YangLANLChemistryAl-in-the-loop for hierarchical workflowsWarpXAxel HueblLBNLPlasma scienceIntegrated Plasma simulation workflows	LOLTINEOATTA		EANIO		
OceananigansSimone SilvestriMITClimateJulia + LLVM toolchain at scale multi-gpuERF-XAnn AlmgrenLBNLWeatherAMReX toolchain at scaleU.S. CMS SCO: HL-LHCDavid SperkaBU/FermilabHEPAl integration with CMS workflowMetaHipMer & UPC++/GASNetRob EganJGI/LBNLBio SciencesGASNet toolchain at scaleSeparationMLPing YangLANLChemistryAl-in-the-loop for hierarchical workflowsWarpXAxel HueblLBNLPlasma scienceIntegrated Plasma simulation workflows	Project Name	PI Name	PI Institution	Science Domain	Project proposal salient feature/summary
ERF-XAnn AlmgrenLBNLWeatherAMReX toolchain at scaleU.S. CMS SCO: HL-LHCDavid SperkaBU/FermilabHEPAl integration with CMS workflowMetaHipMer & UPC++/GASNetRob EganJGI/LBNLBio SciencesGASNet toolchain at scaleSeparationMLPing YangLANLChemistryAl-in-the-loop for hierarchical workflowsWarpXAxel HueblLBNLPlasma scienceIntegrated Plasma simulation 	Oceananigans	Simone Silvestri	MIT	Climate	Julia + LLVM toolchain at scale, multi-gpu
U.S. CMS SCO: HL-LHCDavid SperkaBU/FermilabHEPAl integration with CMS workflowMetaHipMer & UPC++/GASNetRob EganJGI/LBNLBio SciencesGASNet toolchain at scaleSeparationMLPing YangLANLChemistryAl-in-the-loop for hierarchical workflowsWarpXAxel HueblLBNLPlasma scienceIntegrated Plasma simulation workflows	ERF-X	Ann Almgren	LBNL	Weather	AMReX toolchain at scale
MetaHipMer & UPC++/GASNetRob EganJGI/LBNLBio SciencesGASNet toolchain at scaleSeparationMLPing YangLANLChemistryAl-in-the-loop for hierarchical 	U.S. CMS SCO: HL-LHC	David Sperka	BU/Fermilab	HEP	Al integration with CMS workflow
SeparationML Ping Yang LANL Chemistry Al-in-the-loop for hierarchical workflows WarpX Axel Huebl LBNL Plasma science Integrated Plasma simulation workflows	MetaHipMer & UPC++/GASNet	Rob Egan	JGI/LBNL	Bio Sciences	GASNet toolchain at scale
WarpX Axel Huebl LBNL Plasma science Integrated Plasma simulation workflows	SeparationML	Ping Yang	LANL	Chemistry	Al-in-the-loop for hierarchical workflows
	WarpX	Axel Huebl	LBNL	Plasma science	Integrated Plasma simulation workflows

NESAP PATHFINDING PROJECTS FOR 2024

NESAP Pathfinding Projects

NESAP pathfinding projects are one-year projects intended to prepare for and better use advanced workflow capabilities such as hardware acceleration, reconfigurable storage, advanced scheduling, and integration with edge services, as well as alignment with DOE's IRI program.

Urjoshi Sinha HPC Engineer Data & Al Group NERSC

Project goals

Performance goals 0

- Scalability (solvers, ML hybrids, load balancing)
- GPU performance (kernels)

Advanced Capability goals 0

- Containerization & automated performance regression testing
- Jupyter-centric simulation lifecycle

A quick note on my own experience with NERSC

I joined LBNL shortly after NERSC dedication following move from LLNL

(2d

1981

NERSC has always provided great support!

M/S 59R3103

Berkeley, CA 94720 us

Consultants PVM on T3E June 25, 1997 a 3:41 PM Details

To: jlvay@jess.lbl.gov &1 more

Jean-Luc,

At the moment we are evaluating how to accommodate users who are requesting

the ability to use PVM to spawn remote processes. I'll certainly forward your

note to the group who are dealing with this.

On the subject of graphics, we don't anticipate putting any advanced software (such as AVS) on the T3E.

I will keep you informed of our plans.

Jonathan Carter

NERSC User Services

Jonathan Carter

Jonathan Carter, Ph.D. Associate Lab Director for Computing Sciences jtcarter@lbl.gov Phone: +1 510 486 7514 Lawrence Berkeley National Laboratory Jean-Luc Vay writes:

thanks.	NERSC Consultants ArchGoogle July 7, 1998 at 0:32 Re: Disk swaping (?) with f90 on J90 Deta To: Jean-Luc Vay, Cc: NERSC Consulting, Deta Reply-To: consult@nersc.gov <consult@nersc.gov> Deta</consult@nersc.gov>
Jean-Luc Vay Accelerator and Fusion Research Division Lawrence Berkeley National Laboratory - N Berkeley, CA 94720, USA Tel: (1) 510-486-4934 Fax: (1) 510-486-5392 Email: jlvay@lbl.gov	Hi, The Crays do not use virtual memory, so the system is not paging to disk. There are various possibilities for the behavior you're noticing:
- NERSC User Services <u>consult@nersc.go</u> RICHARD GERBER	 The J90 runs at 100 MHz, the T3E at 450 MHz. The two compilers do quite different optimizations on the two architectures; the J90 optimization may be inherently more complicated. Try compiling with -O0 as a test case. There may be a bug in the J90 version of the compiler. I've seen this before, where compiling on one Cray system takes much longer than on another. Cray will fix the compiler if this is the case.
Richard A. Gerber, Ph.D.	I'd be happy to investigate this myself. If you would send me a sample file or tell me where it is on the system, I can try

Thanks to NERSC for all the amazing computing & support

Looking forward to future work @ & w/ NERSC

Thank you all for your attention

