sC 18 July, 2024

.S. DEPARTMENT OF Oﬁlce Of U.S. DEPARTMENT OF

EN ERGY Science ENERGY

Office of
Science

ﬁﬂ

erkeLEY LABHN @ ENERGY <Nt

Bringing Science Solutions to the World]

oday’s Pipeline

Logistics and Introduction

Essentials of CUDA Programming with C++

CUDA Constructs and Program Structure

CUDA Memory Hierarchy

y 7 A Office of
*sc U.S. DEPARTMENT OF 3 : " EN ERGY B e
@ ENERGY Ofﬁce Of ringing Science Solutions to the Worl 3

Science

Some Logistics

In-person attendees please also join Zoom for full participation

Please change your name in Zoom session
o to: first name last nhame
o Click “Participants”, then “More” next to your name to rename

Click the CC button to toggle captions and View Full Transcript
Session is being recorded

Users are muted upon joining Zoom
o Feel free to unmute and ask questions or ask in GDoc below

GDoc is used for Q&A (instead of Zoom chat)
Please answer a short survey afterward

. £ae B, U.S. DEPARTMENT OF
¥ » B
c U.S. DEPARTMENT OF " 2 g EN ERGY
‘r Office of = , 0.4
ENERG Bringing Science Solutions to the World|

Science

Office of

Science

Some Logistics

e Slides and videos will be available on Grads@NERSC page
and NERSC Training Event page

® Crash Course in Supercomputing

O

m HPC concepts, MPI, OpenMP

e Introduction to CUDA Programming Training
O

m previous training materials available
m 13-Part Detailed CUDA Training

Office of

*s = £ae B, U.S. DEPARTMENT OF
¥ » B
c U.S. DEPARTMENT OF 3 R s EN ERGY B e
Y N
@ ENERG Ofﬁce Of Bringing Science Solutions to the World|

Science

https://www.nersc.gov/hpc-crash-course-jun2024/
https://www.nersc.gov/users/training/training-materials/

Hands-on Exercises on Perlmutter

ssh <user>(@perlmutter.nersc.gov

cd $SCRATCH
git clone

o Downloads all exercises (and answers!)
e References

©)

3
3

©)

Office of

* = @\l U.S. DEPARTMENT OF
Dl () _
c @ E-ﬁ"ERﬁ’EFY Office of Bringing Science Solutions to the v‘v‘od et E N E RGY Science

Science

https://docs.nersc.gov/jobs/
https://docs.nersc.gov/jobs/

Using Perimutter Compute Node Reservations

e Existing NERSC users (at time of registration) have been
added to “ntrain3” project

e Non-NERSC users have received email instructions on apply
for a training account
o Please let us know if you need one

e Perimutter node reservations: 10:10 am - 1:10 pm PDT today
0 --reservation=birds eye cudaC

-A ntrain3 -C gpu
(add -g shared -c 32 -G 1 for shared)
for sbatch or salloc sessions

o No need to use --reservation or -A when outside of the
reservation hours

HRsc @ENERGY |27

eeeeee

NERSC Code of Conduct

Team Science |
~ Serviee |
Trust |
Innovation |
Respect |

We agree to work together professionally
and productively towards our shared goals
while respecting each other’s differences
and ideas.

*c U.S. DEPARTMENT OF .
Office of
ENERGY Science

We should all feel free to speak up to maintain this
environment and remember there are resources
available to report violations to foster an
inclusive, collaborative environment.

Email nersc-training@Ibl.gov for any concerns

ENTOF Office of

BERKELEY LA @ EﬁPETMRGY Science

cience Solutions to the World|

https://www.nersc.gov/nersc-code-of-conduct
mailto:nersc-training@lbl.gov

NVIDIA "Ampere" GPU Nodes
4x GPU + 1x CPU (>75 TF)
>160 GiB HBM + DDR

Blades
2x GPU nodes or
4x CPU nodes

4x 200G "Slingshot" NICs

AMD "Milan" CPU Node A\ - iy,
2x CPUs a8 <€ .2l
> 256 GiB DDR4 R 2 > X ,J// Compute racks

1x 200G "Slingshot" NIC (7 64 blades

Centers of Perlmutter system
Excellence GPU racks

Network CPU racks
Storage
App. Readiness
System SW

/ n 3 U.S. DEPARTMENT OF Office of
@ ENERGY o

e

U.S. DEPARTMENT OF

ENERGY

j BERKELEY LAE

cience Solutions to the World|

Office of
Science

mm’n&.ji l

System Specifications

Partition # of nodes

GPU 1536 A\MD EF > NVIDIA A100 (40GB)

256 \MD EF) NVIDIA A100 (80GB)

Login

Large Memory

System Performance

Partition Type Aggregate Peak FP64 (PFLOPS)
GPU CPU 3.9

59.9
tensor: 119.8

7

Office of 22l BERKELEY LAB

Bringing Science Solutions to the World}

Science

Aggregate Memory (TB)

384

U.S. DEPARTMENT OF Office of

ENERGY scionce

Single AMD EPYC 7763 (Milan) CPU | |
64 cores per CPU
Four NVIDIA A100 (Ampere) GPUs

PCle 4.0 GPU-CPU connection AMD Milan { AMD Milan

PCle 4.0 NIC-CPU connection

4 HPE Slingshot 11 NICs | TliT
256 GB of DDR4 DRAM

40 GB of HBM per GPU with
w—— PCle-G4

1555.2 GB/s GPU memory bandwidth s PCle-G4 2x AMD EPYC 7763 (Milan) CPUs

204.8 GB/s CPU memory bandwidth Nvlink-3

64 cores per CPU

12 third generation NVLink links between each pair of gpus AVX2 instruction set

25 GB/s/direction fi h link
/s/direction for each lin 512 GB of DDR4 memory total

Data type GPU TFLOPS 204.8 GB/s memory bandwidth per CPU

1x HPE Slingshot 11 NIC
FP32 19.5
PCle 4.0 NIC-CPU connection

kpot o 39.2 GFlops per core
TF32 (tensor) 2.51 TFlops per socket

4 NUMA domains per socket (NPS=4)
FP16 (tensor)

FP64 (tensor)

U.S. DEPARTMENT OF Ofﬂce Of

U.S. DEPARTMENT OF Office of BERKELEY LA > TN EN ERGY Science
EN ERGY Science Science Solutions to the World|

e It has 16 MDS (metadata servers)

e 2741/0 servers called OSSs
e 3,792 dual-ported NVMe SSDs.

> A = =) U.S. DEPARTMENT OF Office of
sc U.S. DEPARTMENT OF Off]ce Of > 7 \"s’ EN ERGY SC‘ence
sc ' ENERGI Sci ringing Science t
clence

Our Common Challenge NERSC

Enable a diverse community of scientific
users and codes to run efficiently on
advanced architectures like Cori, Perimutter

and beyond

Office of

;;’ U.S. DEPARTMENT OF
>*< ENERGY Science

EEEEEEEEEEEE

What is CUDA?

* CUDA Architecture

Expose GPU parallelism for general-purpose
computing Retain performance

* CUDAC/C++

Based on industry-standard C/C++
Small set of extensions to enable heterogeneous

programming Straightforward APIs to manage devices,
memory etc.

nerEkis sessionintroduces CUDA C/C++ o Ml @ ENERGY e
ENERGY g(f:fgﬁczf Bringing Science Solutions to the Worid 2

Introduction to CUDA C/C++

* What will you learn in this session?

Start from “Hello World!”
Write and launch CUDA C/C++

kernels Manage GPU memory

Manage communication and
synchronization

EEEEEEEEEEEE

AR, U.S. DEPARTMENT OF
@ ENERGY

Office of
Science

3 Ways to Accelerate Applications *c

Applications

. . Compiler Programmin
Libraries omp J J
Directives Languages
Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

- AERD, U.S. DEPARTMENT OF
» b p
C U.S. DEPARTMENT OF) = 7 ENERG Y | Science
ENERGY | sionee R -
A ringing Science Solutions to the World
Science

Libraries: Easy, High-Quality Acceleration S,TZD.A

® Ease of use: Using libraries enables GPU acceleration without in-depth knowledge of GPU
programming

¢ “Drop-in”: Many GPU-accelerated libraries follow standard APls, thus enabling acceleration
with minimal code changes

¢ Quality: Libraries offer high-quality implementations of functions encountered in a broad range
of applications

NVIDIA GPU Accelerated Libraries A

NVIDIA
DEEP LEARNING cuDNN - -

LINEAR ALGEBRA

SIGNAL, IMAGE,
VIDEO

PARALLEL
ALGORITHMS

Heterogeneous Parallel Computing S,%A

— Use the best match for the job (heterogeneity in mobile SOC)

CPU and GPU are designed very differently rfl%A

CPU GPU

Latency Oriented Cores Throughput Oriented Cores

|

~ Registers

SIMD Unit

| Registers |
>
-
o®
Q
Q
>
«Q

CPUs: Latency Oriented Design

CPU

Powerful ALU
Reduced operation latency
Large caches
Convert long latency memory accesses
to short latency cache accesses
Sophisticated control
Branch prediction for reduced branch
latency
Data forwarding for reduced data
latency

=

NVIDIA

GPUs: Throughput Oriented Design

GPU

Small caches
= To boost memory throughput

EEEEEEEEENNNNNNE Simple control

[| No branch prediction
No data forwarding
H Energy efficient ALUs

“HAEEEEEEEEEEEEEN. Many, long latency but heavily

L pipelined for high throughput
I " rends to tolorate acer
threads to tolerate latencies

Threading logic
Thread state

=

NVIDIA

Winning Applications Use Both CPU and GPU S,%A

CPUs for sequential parts - GPUs for parallel parts

where latency matters where throughput wins
CPUs can be 10X+ faster than GPUs « GPUs can be 10X+ faster than
for sequential code CPUs for parallel code

22

Heterogeneous Parallel Computing in Many Disciplines <

NVIDIA

23

<3

Software Dominates System Cost nVIDIA
SW lines per chip increases at 2x/10 months

HW gates per chip increases at 2x/18 months

Future systems must
minimize software
redevelopment

Software-dominated systems industry

10;—wenol.u_ti.?
[Mobile & Clou]

101 ! Gates/chip 2x / 18months
SWichip: 2x/10 months Inflection
108 — SW Productivity: 2x HW/ 5 year i

10e 13 IT Revolution

[PC & Intern

— Lines of Code
- No. Gates
rce-IBRM]
1970 1980 1990 2000 2010 2020

<
Keys to Software Cost Control AVIDIA

Scalability
The same application runs efficiently on new generations of cores
The same application runs efficiently on more of the same cores

More on Scalability S,%A

Performance growth with HW generations
Increasing number of compute units (cores)
Increasing number of threads
Increasing vector length
Increasing pipeline depth
Increasing DRAM burst size
Increasing number of DRAM channels
Increasing data movement latency

The programming style we use in this course
supports scalability through fine-grained
problem decomposition and dynamic thread
scheduling

<
Keys to Software Cost Control AVIDIA
— Scalability

— Portability

— The same application runs efficiently on different types of cores

Keys to Software Cost Control rﬁ%A

= BE= [TESE

— Scalability
— Portability
— The same application runs efficiently on different types of cores
— The same application runs efficiently on systems with different organizations and interfaces

More on Portability

Portability across many different HW types
Across ISAs (Instruction Set Architectures) - X86 vs. ARM, etc.
Latency oriented CPUs vs. throughput oriented GPUs
Across parallelism models - VLIW vs. SIMD vs. threading
Across memory models - Shared memory vs. distributed memory

>

NVIDIA

o

NVIDIA

To learn about CUDA threads, the main mechanism for exploiting of data parallelism
Hierarchical thread organization
Launching parallel execution
Thread index to data index mapping

|

NVIDIA

.

It

CUDA Execution Model ff,%A

— Heterogeneous host (CPU) + device (GPU) application C program
— Serial parts in host C code
— Parallel parts in device SPMD kernel code

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Parallel Kernel (device)
KernelB<<< nBIk, nTid >>>(args); L

=

NVIDIA

Natural Language (e.g, English)

Algorithm

High-Level Language (C/C++...)

Instruction Set Architecture

Microarchitecture

Circuits

Electrons

©VYale Patt and Sanjay Patel, From bits and bytes to gates and beyond

A program at the ISA level S:ZD.A

- ﬁpr&ogram is a set of instructions stored in memory that can be read, interpreted, and executed by the
ardware.

— Program instructions operate on data stored in memory and/or registers.

34

A Thread as a Von-Neumann Processor

A thread is a “virtualized” or “abstracted”
Von-Neumann Processor

Memory

i

!

Processing Unit

Reg
File

7y

r——p

1/O

Control Unit

<3

NVIDIA

|
Arrays of Parallel Threads Vi

A CUDA kernel is executed by a grid (array) of threads
All threads in a grid run the same kernel code (Single Program Multiple Data)
Each thread has indexes that it uses to compute memory addresses and make control decisions

i = blockldx.x * blockDim.x + threadldx.x;

Cli] = Ali] + BIil;

<X

NVIDIA

i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +

threadldx.x; threadldx.x;
Cli] = Ali] + BI[i]; CIi] = Ali] + BI[i];

threadldx.x;
CIi] = Ali] + BI[i];

Divide thread array into multiple blocks

Threads within a block cooperate via shared memory, atomic operations and barrier
synchronization

Threads in different blocks do not interact

=

blockldx and threadldx TBUs

Each thread uses indices to decide what data to work on
blockldx: 1D, 2D, or 3D (CUDA 4.0)
threadldx: 1D, 2D, or 3D

Simplifies memory
addressing when processing
multidimensional data

Image processing
Solving PDEs on volumes

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

|

NVIDIA

.

It

CUDA Execution Model f,%\

— Heterogeneous host (CPU) + device (GPU) application C program
— Serial parts in host C code
— Parallel parts in device SPMD kernel code

Parallel Kernel (device)
KernelA<<< nBIk, nTid >>>(args);

Parallel Kernel (device)
KernelB<<< nBIk, nTid >>>(args);

=

NVIDIA

Natural Language (e.g, English)

Algorithm

High-Level Language (C/C++...)

Instruction Set Architecture

Microarchitecture

Circuits

Electrons

©VYale Patt and Sanjay Patel, From bits and bytes to gates and beyond

A program at the ISA level rffzm

- ﬁpaogram is a set of instructions stored in memory that can be read, interpreted, and executed by the
ardware.

— Both CPUs and GPUs are designed based on (different) instruction sets

— Program instructions operate on data stored in memory and/or registers.

42

A Thread as a Von-Neumann Processor

A thread is a “virtualized” or “abstracted”
Von-Neumann Processor

Memory

i

!

Processing Unit

Reg
File

7y

r——p

1/O

Control Unit

<3

NVIDIA

|
Arrays of Parallel Threads Vi

A CUDA kernel is executed by a grid (array) of threads
All threads in a grid run the same kernel code (Single Program Multiple Data)
Each thread has indexes that it uses to compute memory addresses and make control decisions

i = blockldx.x * blockDim.x + threadldx.x;

Cli] = Ali] + BIil;

<X

NVIDIA

i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +

threadldx.x; threadldx.x;
Cli] = Ali] + BI[i]; CIi] = Ali] + BI[i];

threadldx.x;
CIi] = Ali] + BI[i];

Divide thread array into multiple blocks

Threads within a block cooperate via shared memory, atomic operations and barrier
synchronization

Threads in different blocks do not interact

=

blockldx and threadldx TBUs

Each thread uses indices to decide what data to work on
blockldx: 1D, 2D, or 3D (CUDA 4.0)
threadldx: 1D, 2D, or 3D

Simplifies memory
addressing when processing
multidimensional data

Image processing
Solving PDEs on volumes

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

Objective <

NVIDIA

- To learn the basic API functions in CUDA host code for CUDA
Unified Memory

Unified Memory Allocation
Data Transfer in Unified Memory

>

NVIDIA

CUDA Unified

Memory (U M) Is a single memory address space accessible both
from the host and from the device.

The hardware/software handles automatically the
data migration between the host and the device
maintaining consistency between them.

S T T

Partial Overview of CUDA Memories <3

NVIDIA

(Device) Grid Device code can:

Block (0, 0) Blocki{o:) R/W per-thread registers

Registers Registers Registers Registers R/W a”'Sha rEd gIObaI memory

Thread (0, 0) | Thread (0,1) | Thread (0,0) Thread (0, 1) R/W managed memory (Un|f|ed

Memory)
S Host code can
Unified Memory Transfer data to/from per grid

global memory
R/W managed memory

Partial Overview of CUDA Memories <3

NVIDIA

TR cudaMallocManagc.ed(). 3

Block (0, 0) Block (0, 1) Allocates an object in the Unified Memory

address space.

e B B B Two parameters, with an optional third

Thread (0, 0) | Thread (0,1)| | Thread (0, 0) |Thread (0, 1) parameter.
Address of a pointer to the allocated
Global object
Memory Size of the allocated object in terms of
Unified Memory bytes

[Optional] Flag indicating if memory can
be accessed from any device or stream
cudaFree()
Frees object from unified memory.
One parameter
Pointer to freed object

Partial Overview of CUDA Memories ,S%A

cudaMemcpy()
Memory data transfer
Requires four parameters
Registers Registers Registers Registers Pointer to destination
Pointer to source
Number of bytes copied
Type/Direction of transfer
Global Depending on the transfer type, the driver may
Memory decide to use the memory on the host or the device.
Unified Memory In Unified Memory this function is utilized to copy
data between different arrays, regardless of position.

(Device) Grid
Block (0, 0) Block (0, 1)

Thread (0, 0)| | Thread (0, 1)| | | Thread (0, 0)| | Thread (0, 1)

Putting it all together, vecAdd CUDA host code using Unifﬁ%A
Memory

*m_A, *m_B, *m_C,
size = n * sizeof()
cudaMallocManaged((**) &m_A, size);
cudaMallocManaged((oic**) &m_B, size); Allocation of Managed Memory
cudaMallocManaged((**) &m_C, size);
/[Memory initialization on the Host

-— m_A, m_B gets initialized on the host

/I Kernel invocation code - to be shown later
S The device performs the actual vector addition

cudaFree(); cudaFree cudaFree

CUDA Unified Memory for different architectures <3

NVIDIA

Prior to compute capability 6.x Compute capability 6.x onwards
- There is no specialized hardware - There are specialized hardware
units to improve UM efficiency. units managing page faulting.

- For data migration the full - Data is migrated on demand,
memory block needs to be meaning that data gets copied
copied synchronically by the only on page fault.
driver. - Possibility to oversubscribe

- No memory oversubscription. memory, enabling

larger arrays than the device
memory size.

Example: Vector Addition Kernel S,%A

Device Code

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global
void vecAddKernel (rloat* A, trtloat* B, tloat* C, int n)
{
int i = threadIdx.x+blockDim.x*blockIdx.x;
if (i<n) C[i] = A[i] + B[i];

Example: Vector Addition Kernel Launch (Host Code) <3

NVIDIA

Host Code

void vecAdd(float* h A, float* h B, float* h C, int n)
{

// d A, d B, d C allocations and copies omitted

// Run ceil(n/256.0) blocks of 256 threads each

k (dA, dB, d C, n);
}

The ceiling function makes sure that there
are enough threads to cover all elements.

More on Kernel Launch (Host Code) S%A

Host Code

void vecAdd(float* h A, float* h B, float* h C, int n)
{

dim3 DimGrid((n-1)/256 + 1, 1, 1);

dim3 DimBlock (256, 1, 1);

vecAddKernel<<<DimGrid,DimBlock>>>(d A, d B, d C, n);
}

This is an equivalent way to express the
ceiling function.

56

: : @
Kernel execution in a nutshell nv%A

__host___ __global

void vecAdd(..) void vecAddKernel (float *A,

{ float *B, float *C, int n)
dim3 DimGrid(ceil (n/256.0),1,1) ; {
dim3 DimBlock (256,1,1) ; int i = blockIdx.x * blockDim.x

vecAddKernel<<<DimGrid,DimBlock>>>(d A,d B + threadIdx.x;

A C n) -

} if(1<n) C[i] = A[i]+B[i];

P P

Y

More on CUDA Function Declarations GZ
NVIDIA

Executed on | Only callable from
the: the:

__device float DeviceFunc()

- defines a kernel function
= Each “__” consists of two underscore characters

- A kernel function must return
- and can be used together
- is optional if used alone

Compiling A CUDA Program E%A

Integrated C programs with CUDA extensions

4

NVCC Compiler

Host Code ‘ ‘ Device Code

\L L/\)

Host C Compiler/ Linker Device Just-in-Time Compiler

. 4 2

Heterogeneous Computing Platform with
CPUs, GPUs, etc.

