
1

18 July, 2024

NERSC User’s Group
(NUG) Community Call:

Using CUDA with C/C++ on
Perlmutter@NERSC

2

Today’s Pipeline

• Logistics and Introduction

• Essentials of CUDA Programming with C++

• CUDA Constructs and Program Structure

• CUDA Memory Hierarchy

3

Some Logistics
● In-person attendees please also join Zoom for full participation
● Please change your name in Zoom session

○ to: first_name last_name
○ Click “Participants”, then “More” next to your name to rename

● Click the CC button to toggle captions and View Full Transcript
● Session is being recorded
● Users are muted upon joining Zoom

○ Feel free to unmute and ask questions or ask in GDoc below
● GDoc is used for Q&A (instead of Zoom chat)
● Please answer a short survey afterward

4

Some Logistics
● Slides and videos will be available on Grads@NERSC page

and NERSC Training Event page
● Crash Course in Supercomputing

○ https://www.nersc.gov/hpc-crash-course-jun2024/
■ HPC concepts, MPI, OpenMP

● Introduction to CUDA Programming Training
○ https://www.nersc.gov/users/training/training-materials/

■ previous training materials available
■ 13-Part Detailed CUDA Training

https://www.nersc.gov/hpc-crash-course-jun2024/
https://www.nersc.gov/users/training/training-materials/

5

Hands-on Exercises on Perlmutter
ssh <user>@perlmutter.nersc.gov, land on login node:
● % cd $SCRATCH
● % git clone

○ Downloads all exercises (and answers!)
● References

○ Running Jobs: https://docs.nersc.gov/jobs/
○ Interactive Jobs: https://docs.nersc.gov/jobs/examples/#interactive

https://docs.nersc.gov/jobs/
https://docs.nersc.gov/jobs/

6

Using Perlmutter Compute Node Reservations
● Existing NERSC users (at time of registration) have been

added to “ntrain3” project
● Non-NERSC users have received email instructions on apply

for a training account
○ Please let us know if you need one

● Perlmutter node reservations: 10:10 am - 1:10 pm PDT today
○ --reservation=birds_eye_cudaC

-A ntrain3 -C gpu

(add -q shared -c 32 -G 1 for shared)
for sbatch or salloc sessions

○ No need to use --reservation or -A when outside of the
reservation hours

7

NERSC Code of Conduct
As NERSC collaborators, we are all
bound by the Code of Conduct:

 Team Science .

 Service .

 Trust .

 Innovation .

 Respect .

https://www.nersc.gov/nersc-code-of-conduct or search “NERSC Code of Conduct”

We agree to work together professionally
and productively towards our shared goals
while respecting each other’s differences
and ideas.

We should all feel free to speak up to maintain this
environment and remember there are resources
available to report violations to foster an
inclusive, collaborative environment.
Email nersc-training@lbl.gov for any concerns

https://www.nersc.gov/nersc-code-of-conduct
mailto:nersc-training@lbl.gov

8

AMD "Milan" CPU Node
2x CPUs

> 256 GiB DDR4
1x 200G "Slingshot" NIC

NVIDIA "Ampere" GPU Nodes
4x GPU + 1x CPU (>75 TF)

>160 GiB HBM + DDR
4x 200G "Slingshot" NICs

Perlmutter system configuration

Compute racks
64 blades

Blades
2x GPU nodes or

4x CPU nodes

Centers of
Excellence
Network
Storage

App. Readiness
System SW

Perlmutter system
GPU racks
CPU racks

~6 MW

9

The System

More Details:
https://docs.nersc.gov/systems/perlmutter/architecture/

10

The System
GPU Nodes: CPU Nodes:

11

The System
All Flash Filesystem:

● 35 PB of disk space

● an aggregate bandwidth of >5 TB/sec

● 4 million IOPS (4 KiB random)

● It has 16 MDS (metadata servers)

● 274 I/O servers called OSSs

● 3,792 dual-ported NVMe SSDs.

12

Our Common Challenge

Enable a diverse community of scientific
users and codes to run efficiently on
advanced architectures like Cori, Perlmutter
and beyond

13

What is CUDA?

CUDA Architecture
Expose GPU parallelism for general-purpose
computing Retain performance

CUDA C/C++
Based on industry-standard C/C++
Small set of extensions to enable heterogeneous
programming Straightforward APIs to manage devices,
memory etc.

This session introduces CUDA C/C++

14

Introduction to CUDA C/C++

What will you learn in this session?
Start from “Hello World!”
Write and launch CUDA C/C++
kernels Manage GPU memory

Manage communication and
synchronization

15

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

Libraries: Easy, High-Quality Acceleration

• Ease of use: Using libraries enables GPU acceleration without in-depth knowledge of GPU
programming

• “Drop-in”: Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration
with minimal code changes

• Quality: Libraries offer high-quality implementations of functions encountered in a broad range
of applications

NVIDIA GPU Accelerated Libraries

NVIDIA NPPcuFFT CODEC SDK

DeepStream SDKTensorRTcuDNN

DEEP LEARNING

cuBLAS cuSPARSE cuSOLVER
LINEAR ALGEBRA

nvGRAPH NCCL

PARALLEL
 ALGORITHMS

SIGNAL, IMAGE,
 VIDEO

Heterogeneous Parallel Computing
– Use the best match for the job (heterogeneity in mobile SOC)

Latency
Cores

Throughput
Cores

DSP Cores

HW IPs

Configurable
Logic/Cores

On-chip
Memories

Cloud
Services

CPU and GPU are designed very differently
CPU

Latency Oriented Cores

Chip

Core

Local Cache

Registers

SIMD Unit

C
ontrol

GPU
Throughput Oriented Cores

Chip

Compute Unit
Cache/Local Mem

Registers

SIMD
Unit

Threading

CPUs: Latency Oriented Design
Powerful ALU

Reduced operation latency

Large caches
Convert long latency memory accesses

to short latency cache accesses

Sophisticated control
Branch prediction for reduced branch

latency
Data forwarding for reduced data

latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

GPUs: Throughput Oriented Design
Small caches

To boost memory throughput

Simple control
No branch prediction
No data forwarding

Energy efficient ALUs
Many, long latency but heavily

pipelined for high throughput

Require massive number of
threads to tolerate latencies

Threading logic
Thread state

DRAM

GPU

Winning Applications Use Both CPU and GPU

• CPUs for sequential parts
where latency matters

• CPUs can be 10X+ faster than GPUs
for sequential code

• GPUs for parallel parts
where throughput wins

• GPUs can be 10X+ faster than
CPUs for parallel code

22

Heterogeneous Parallel Computing in Many Disciplines

23

Financial
Analysis

Scientific
Simulation

Engineering
Simulation

Data
Intensive
Analytics

Medical
Imaging

Digital Audio
Processing

Computer
Vision

Digital Video
Processing

Biomedical
Informatics

Electronic
Design

Automation

Statistical
Modeling

Ray Tracing
Rendering

Interactive
Physics

Numerical
Methods

Software Dominates System Cost
SW lines per chip increases at 2x/10 months

HW gates per chip increases at 2x/18 months

Future systems must
minimize software
redevelopment

Keys to Software Cost Control

Scalability
The same application runs efficiently on new generations of cores
The same application runs efficiently on more of the same cores

App

Core A Core ACore A

More on Scalability
– Performance growth with HW generations

– Increasing number of compute units (cores)

– Increasing number of threads

– Increasing vector length

– Increasing pipeline depth

– Increasing DRAM burst size

– Increasing number of DRAM channels

– Increasing data movement latency

The programming style we use in this course
supports scalability through fine-grained
problem decomposition and dynamic thread
scheduling

Keys to Software Cost Control

– Scalability
– Portability

– The same application runs efficiently on different types of cores

App

Core A

App

Core C

App

Core B

Keys to Software Cost Control

– Scalability
– Portability

– The same application runs efficiently on different types of cores

– The same application runs efficiently on systems with different organizations and interfaces

App AppApp

More on Portability
– Portability across many different HW types

– Across ISAs (Instruction Set Architectures) - X86 vs. ARM, etc.

– Latency oriented CPUs vs. throughput oriented GPUs

– Across parallelism models - VLIW vs. SIMD vs. threading

– Across memory models - Shared memory vs. distributed memory

Objective
– To learn about CUDA threads, the main mechanism for exploiting of data parallelism

– Hierarchical thread organization
– Launching parallel execution
– Thread index to data index mapping

2

A[0]vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

CUDA Execution Model
– Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code

– Parallel parts in device SPMD kernel code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm

High-Level Language (C/C++…)
Instruction Set Architecture

Microarchitecture
Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler

A program at the ISA level
– A program is a set of instructions stored in memory that can be read, interpreted, and executed by the

hardware.
– Both CPUs and GPUs are designed based on (different) instruction sets

– Program instructions operate on data stored in memory and/or registers.

34

A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or “abstracted”
Von-Neumann Processor

Arrays of Parallel Threads
• A CUDA kernel is executed by a grid (array) of threads

– All threads in a grid run the same kernel code (Single Program Multiple Data)
– Each thread has indexes that it uses to compute memory addresses and make control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…

Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations and barrier

synchronization

– Threads in different blocks do not interact

37

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…

…… …

blockIdx and threadIdx
• Each thread uses indices to decide what data to work on

– blockIdx: 1D, 2D, or 3D (CUDA 4.0)

– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

38

device

Grid Block (0,
0)

Block (1,
1)Block (1, 0)

Block (0,
1)

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

A[0]vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

39

CUDA Execution Model
– Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code

– Parallel parts in device SPMD kernel code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm

High-Level Language (C/C++…)
Instruction Set Architecture

Microarchitecture
Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler

A program at the ISA level
– A program is a set of instructions stored in memory that can be read, interpreted, and executed by the

hardware.
– Both CPUs and GPUs are designed based on (different) instruction sets

– Program instructions operate on data stored in memory and/or registers.

42

A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or “abstracted”
Von-Neumann Processor

Arrays of Parallel Threads
• A CUDA kernel is executed by a grid (array) of threads

– All threads in a grid run the same kernel code (Single Program Multiple Data)
– Each thread has indexes that it uses to compute memory addresses and make control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…

Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations and barrier

synchronization

– Threads in different blocks do not interact

45

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…

…… …

blockIdx and threadIdx

• Each thread uses indices to decide what data to work on
– blockIdx: 1D, 2D, or 3D (CUDA 4.0)

– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

46

device

Grid Block (0,
0)

Block (1,
1)Block (1, 0)

Block (0,
1)

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

Objective

- To learn the basic API functions in CUDA host code for CUDA
Unified Memory

- Unified Memory Allocation
- Data Transfer in Unified Memory

47

CUDA Unified
Memory (UM) •Is a single memory address space accessible both

from the host and from the device.
•The hardware/software handles automatically the
data migration between the host and the device
maintaining consistency between them.

48

Partial Overview of CUDA Memories

– Device code can:
– R/W per-thread registers
– R/W all-shared global memory
– R/W managed memory (Unified

Memory)
– Host code can

– Transfer data to/from per grid
global memory

– R/W managed memory

49

Host

(Device) Grid
Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory

Global
Memory

Host
Memory

Partial Overview of CUDA Memories

– cudaMallocManaged()
– Allocates an object in the Unified Memory

address space.
– Two parameters, with an optional third

parameter.
– Address of a pointer to the allocated

object
– Size of the allocated object in terms of

bytes
– [Optional] Flag indicating if memory can

be accessed from any device or stream
– cudaFree()

– Frees object from unified memory.
– One parameter

– Pointer to freed object

50

Host

(Device) Grid
Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory

Global
Memory

Host
Memory

Partial Overview of CUDA Memories

– cudaMemcpy()
– Memory data transfer
– Requires four parameters

– Pointer to destination
– Pointer to source
– Number of bytes copied
– Type/Direction of transfer

– Depending on the transfer type, the driver may
decide to use the memory on the host or the device.

– In Unified Memory this function is utilized to copy
data between different arrays, regardless of position.

51

Host

(Device) Grid
Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory

Global
Memory

Host
Memory

Putting it all together, vecAdd CUDA host code using Unified
Memory

int main() {

 float *m_A, float *m_B, float *m_C, int n;

 int size = n * sizeof(float);

 cudaMallocManaged((void**) &m_A, size);
 cudaMallocManaged((void**) &m_B, size);
 cudaMallocManaged((void**) &m_C, size);

 // Memory initialization on the Host

 // Kernel invocation code - to be shown later

 cudaFree(m_A); cudaFree(m_B); cudaFree(m_C);
}

Allocation of Managed Memory

m_A, m_B gets initialized on the host

The device performs the actual vector addition

CUDA Unified Memory for different architectures

Prior to compute capability 6.x

– There is no specialized hardware
units to improve UM efficiency.

– For data migration the full
memory block needs to be
copied synchronically by the
driver.

– No memory oversubscription.

Compute capability 6.x onwards

– There are specialized hardware
units managing page faulting.

– Data is migrated on demand,
meaning that data gets copied
only on page fault.

– Possibility to oversubscribe
memory, enabling
larger arrays than the device
memory size.

53

Example: Vector Addition Kernel

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
 int i = threadIdx.x+blockDim.x*blockIdx.x;
 if(i<n) C[i] = A[i] + B[i];
}

Device Code

Example: Vector Addition Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
 // d_A, d_B, d_C allocations and copies omitted
 // Run ceil(n/256.0) blocks of 256 threads each
 vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);
}

Host Code

4

The ceiling function makes sure that there
are enough threads to cover all elements.

More on Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
 dim3 DimGrid((n-1)/256 + 1, 1, 1);
 dim3 DimBlock(256, 1, 1);
 vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);
}

56

Host Code

This is an equivalent way to express the
ceiling function.

__host__
void vecAdd(…)
{
 dim3 DimGrid(ceil(n/256.0),1,1);
 dim3 DimBlock(256,1,1);
vecAddKernel<<<DimGrid,DimBlock>>>(d_A,d_B
,d_C,n);
}

Kernel execution in a nutshell

57

GridBlk 0 Blk N-1
• • •

GPUM0
RAM

Mk• • •

__global__
void vecAddKernel(float *A,
 float *B, float *C, int n)
{
 int i = blockIdx.x * blockDim.x
 + threadIdx.x;

 if(i<n) C[i] = A[i]+B[i];
}

More on CUDA Function Declarations

− __global__ defines a kernel function
− Each “__” consists of two underscore characters

− A kernel function must return void

− __device__ and __host__ can be used together
− __host__ is optional if used alone

58

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable from
the:

Executed on
the:

Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code
(PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs, etc.

Compiling A CUDA Program

