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18 July, 2024

NERSC User’s Group 
(NUG) Community Call:

Using CUDA with C/C++ on 
Perlmutter@NERSC 
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Today’s Pipeline

• Logistics and Introduction

• Essentials of CUDA Programming with C++

• CUDA Constructs and Program Structure

• CUDA Memory Hierarchy
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Some Logistics
● In-person attendees please also join Zoom for full participation
● Please change your name in Zoom session

○ to: first_name last_name 
○ Click “Participants”, then “More” next to your name to rename

● Click the CC button to toggle captions and View Full Transcript
● Session is being recorded
● Users are muted upon joining Zoom 

○ Feel free to unmute and ask questions or ask in GDoc below
● GDoc is used for Q&A (instead of Zoom chat)
● Please answer a short survey afterward
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Some Logistics
● Slides and videos will be available on Grads@NERSC page 

and NERSC Training Event page
● Crash Course in Supercomputing

○ https://www.nersc.gov/hpc-crash-course-jun2024/
■ HPC concepts, MPI, OpenMP

● Introduction to CUDA Programming Training 
○ https://www.nersc.gov/users/training/training-materials/

■ previous training materials available
■ 13-Part Detailed CUDA Training 

https://www.nersc.gov/hpc-crash-course-jun2024/
https://www.nersc.gov/users/training/training-materials/
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Hands-on Exercises on Perlmutter
ssh <user>@perlmutter.nersc.gov, land on login node:
● % cd $SCRATCH
● % git clone 

○ Downloads all exercises (and answers!)   
● References

○ Running Jobs: https://docs.nersc.gov/jobs/
○ Interactive Jobs: https://docs.nersc.gov/jobs/examples/#interactive

https://docs.nersc.gov/jobs/
https://docs.nersc.gov/jobs/


6

Using Perlmutter Compute Node Reservations
● Existing NERSC users (at time of registration) have been 

added to “ntrain3” project
● Non-NERSC users have received email instructions on apply 

for a training account 
○ Please let us know if you need one

● Perlmutter node reservations: 10:10 am - 1:10 pm PDT today
○ --reservation=birds_eye_cudaC

-A ntrain3 -C gpu 

(add -q shared -c 32 -G 1 for shared)
for sbatch or salloc sessions

○ No need to use --reservation or -A when outside of the 
reservation hours
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NERSC Code of Conduct
As NERSC collaborators, we are all 
bound by the Code of Conduct:

    Team Science                                 .            

    Service                                            .

    Trust                                                .

    Innovation                                       .

    Respect                                           .

https://www.nersc.gov/nersc-code-of-conduct or search “NERSC Code of Conduct”

We agree to work together professionally 
and productively towards our shared goals 
while respecting each other’s differences 
and ideas.

We should all feel free to speak up to maintain this 
environment and remember there are resources 
available to report violations to foster an 
inclusive, collaborative environment.               
Email nersc-training@lbl.gov for any concerns

https://www.nersc.gov/nersc-code-of-conduct
mailto:nersc-training@lbl.gov
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AMD "Milan" CPU Node
2x CPUs 

> 256 GiB DDR4
1x 200G "Slingshot" NIC

NVIDIA "Ampere" GPU Nodes
4x GPU + 1x CPU (>75 TF)

>160 GiB HBM + DDR
4x 200G "Slingshot" NICs 

Perlmutter system configuration

Compute racks
64 blades

Blades
2x GPU nodes or 

4x CPU nodes

Centers of 
Excellence
Network
Storage

App. Readiness
System SW

Perlmutter system
GPU racks
CPU racks

~6 MW
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The System

More Details: 
https://docs.nersc.gov/systems/perlmutter/architecture/
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The System
GPU Nodes: CPU Nodes:
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The System
All Flash Filesystem:

● 35 PB of disk space

● an aggregate bandwidth of >5 TB/sec

● 4 million IOPS (4 KiB random) 

● It has 16 MDS (metadata servers)

● 274 I/O servers called OSSs

● 3,792 dual-ported NVMe SSDs.
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Our Common Challenge

Enable a diverse community of scientific 
users and codes to run efficiently on 
advanced architectures like Cori, Perlmutter 
and beyond
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What is CUDA?

CUDA Architecture
Expose GPU parallelism for general-purpose 
computing Retain performance

CUDA C/C++
Based on industry-standard C/C++
Small set of extensions to enable heterogeneous 
programming Straightforward APIs to manage devices, 
memory etc.

This session introduces CUDA C/C++
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Introduction to CUDA C/C++

What will you learn in this session?
Start from “Hello World!”
Write and launch CUDA C/C++ 
kernels Manage GPU memory

Manage communication and 
synchronization
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3 Ways to Accelerate Applications

Applications

Libraries

Easy to use
Most Performance

Programming 
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives



Libraries: Easy, High-Quality Acceleration

• Ease of use:  Using libraries enables GPU acceleration without in-depth knowledge of GPU 
programming

• “Drop-in”:  Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration 
with minimal code changes

• Quality:  Libraries offer high-quality implementations of functions encountered in a broad range 
of applications 



NVIDIA GPU Accelerated Libraries

NVIDIA NPPcuFFT CODEC SDK

DeepStream SDKTensorRTcuDNN

DEEP LEARNING

cuBLAS cuSPARSE cuSOLVER
LINEAR ALGEBRA

nvGRAPH NCCL

PARALLEL
 ALGORITHMS

SIGNAL, IMAGE,
 VIDEO



Heterogeneous Parallel Computing
– Use the best match for the job (heterogeneity in mobile SOC)

Latency 
Cores

Throughput 
Cores

DSP Cores

HW IPs

Configurable
Logic/Cores

On-chip 
Memories

Cloud 
Services



CPU and GPU are designed very differently
CPU

Latency Oriented Cores

Chip

Core

Local Cache

Registers

SIMD Unit

C
ontrol

GPU 
Throughput Oriented Cores

Chip

Compute Unit
Cache/Local Mem

Registers

SIMD 
Unit

Threading



CPUs: Latency Oriented Design 
Powerful ALU

Reduced operation latency

Large caches
Convert long latency memory accesses 

to short latency cache accesses

Sophisticated control
Branch prediction for reduced branch 

latency
Data forwarding for reduced data 

latency

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU



GPUs: Throughput Oriented Design
Small caches

To boost memory throughput

Simple control
No branch prediction
No data forwarding

Energy efficient ALUs
Many, long latency but heavily 

pipelined for high throughput

Require massive number of 
threads to tolerate latencies

Threading logic
Thread state 

DRAM

GPU



Winning Applications Use Both CPU and GPU 

• CPUs for sequential parts 
where latency matters

• CPUs can be 10X+ faster than GPUs 
for sequential code

• GPUs for parallel parts 
where throughput wins

• GPUs can be 10X+ faster than 
CPUs for parallel code

22



Heterogeneous Parallel Computing in Many Disciplines
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Financial 
Analysis

Scientific 
Simulation

Engineering 
Simulation

Data 
Intensive 
Analytics

Medical 
Imaging

Digital Audio 
Processing

Computer 
Vision

Digital Video 
Processing

Biomedical 
Informatics

Electronic 
Design 

Automation

Statistical 
Modeling

Ray Tracing 
Rendering

Interactive 
Physics

Numerical 
Methods



Software Dominates System Cost
SW lines per chip increases at 2x/10 months

HW gates per chip increases at 2x/18 months

Future systems must
minimize software
redevelopment



Keys to Software Cost Control

Scalability
The same application runs efficiently on new generations of cores
The same application runs efficiently on more of the same cores

App

Core A Core ACore A



More on Scalability
– Performance growth with HW generations

– Increasing number of compute units (cores)

– Increasing number of threads

– Increasing vector length

– Increasing pipeline depth

– Increasing DRAM burst size

– Increasing number of DRAM channels

– Increasing data movement latency

The programming style we use in this course 
supports scalability through fine-grained 
problem decomposition and dynamic thread 
scheduling



Keys to Software Cost Control

– Scalability
– Portability

– The same application runs efficiently on different types of cores

App

Core A

App

Core C

App

Core B



Keys to Software Cost Control

– Scalability
– Portability

– The same application runs efficiently on different types of cores

– The same application runs efficiently on systems with different organizations and interfaces

App AppApp



More on Portability
– Portability across many different HW types

– Across ISAs (Instruction Set Architectures) - X86 vs. ARM, etc.

– Latency oriented CPUs vs. throughput oriented GPUs

– Across parallelism models - VLIW vs. SIMD vs. threading

– Across memory models - Shared memory vs. distributed memory



Objective
– To learn about CUDA threads, the main mechanism for exploiting of data parallelism

– Hierarchical thread organization
– Launching parallel execution
– Thread index to data index mapping

2



A[0]vector  A

vector  B

vector  C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example



CUDA Execution Model
– Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code

– Parallel parts in device SPMD kernel code

Serial Code (host) 

. . .

. . .

Parallel Kernel (device) 
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host) 

Parallel Kernel (device) 
KernelB<<< nBlk, nTid >>>(args);



From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm

High-Level Language (C/C++…)
Instruction Set Architecture

Microarchitecture
Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler



A program at the ISA level
– A program is a set of instructions stored in memory that can be read, interpreted, and executed by the 

hardware.
– Both CPUs and GPUs are designed based on (different) instruction sets

– Program instructions operate on data stored in memory and/or registers.

34



A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or “abstracted” 
Von-Neumann Processor



Arrays of Parallel Threads
• A CUDA kernel is executed by a grid (array) of threads 

– All threads in a grid run the same kernel code (Single Program Multiple Data) 
– Each thread has indexes that it uses to compute memory addresses and make control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…



Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations and barrier 

synchronization

– Threads in different blocks do not interact
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i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…

…… …



blockIdx and threadIdx
• Each thread uses indices to decide what data to work on

– blockIdx: 1D, 2D, or 3D (CUDA 4.0)

– threadIdx: 1D, 2D, or 3D 

• Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …
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device

Grid Block (0, 
0)

Block (1, 
1)Block (1, 0)

Block (0, 
1)

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)



A[0]vector  A

vector  B

vector  C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

39



CUDA Execution Model
– Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code

– Parallel parts in device SPMD kernel code

Serial Code (host) 

. . .

. . .

Parallel Kernel (device) 
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host) 

Parallel Kernel (device) 
KernelB<<< nBlk, nTid >>>(args);



From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm

High-Level Language (C/C++…)
Instruction Set Architecture

Microarchitecture
Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler



A program at the ISA level
– A program is a set of instructions stored in memory that can be read, interpreted, and executed by the 

hardware.
– Both CPUs and GPUs are designed based on (different) instruction sets

– Program instructions operate on data stored in memory and/or registers.
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A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or “abstracted” 
Von-Neumann Processor



Arrays of Parallel Threads
• A CUDA kernel is executed by a grid (array) of threads 

– All threads in a grid run the same kernel code (Single Program Multiple Data) 
– Each thread has indexes that it uses to compute memory addresses and make control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…



Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations and barrier 

synchronization

– Threads in different blocks do not interact
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i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…

…… …



blockIdx and threadIdx

• Each thread uses indices to decide what data to work on
– blockIdx: 1D, 2D, or 3D (CUDA 4.0)

– threadIdx: 1D, 2D, or 3D 

• Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …
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device

Grid Block (0, 
0)

Block (1, 
1)Block (1, 0)

Block (0, 
1)

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)



Objective

- To learn the basic API functions in CUDA host code for CUDA 
Unified Memory

- Unified Memory Allocation
- Data Transfer in Unified Memory

47



CUDA Unified 
Memory (UM) •Is a single memory address space accessible both 

from the host and from the device.
•The hardware/software handles automatically the 
data migration between the host and the device 
maintaining consistency between them.
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Partial Overview of CUDA Memories

– Device code can:
– R/W per-thread registers
– R/W all-shared global memory
– R/W managed memory (Unified 

Memory)
– Host code can

– Transfer data to/from per grid 
global memory 

– R/W managed memory
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Host

(Device) Grid
Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory

Global
Memory

Host
Memory



Partial Overview of CUDA Memories

– cudaMallocManaged()
– Allocates an object in the Unified Memory 

address space.
– Two parameters, with an optional third 

parameter.
– Address of a pointer to the allocated 

object
– Size of the allocated object in terms of 

bytes
– [Optional] Flag indicating if memory can 

be accessed from any device or stream
– cudaFree()

– Frees object from unified memory.
– One parameter

– Pointer to freed object

50

Host

(Device) Grid
Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory

Global
Memory

Host
Memory



Partial Overview of CUDA Memories

– cudaMemcpy()
– Memory data transfer
– Requires four parameters

– Pointer to destination 
– Pointer to source
– Number of bytes copied
– Type/Direction of transfer

– Depending on the transfer type, the driver may 
decide to use the memory on the host or the device.

– In Unified Memory this function is utilized to copy 
data between different arrays, regardless of position.
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Host

(Device) Grid
Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

Unified Memory

Global
Memory

Host
Memory



Putting it all together, vecAdd CUDA host code using Unified 
Memory

int main() {
    
    float *m_A, float *m_B, float *m_C, int n;
    
    int size = n * sizeof(float);
    
    cudaMallocManaged((void**) &m_A, size);
    cudaMallocManaged((void**) &m_B, size);
    cudaMallocManaged((void**) &m_C, size);
    
    // Memory initialization on the Host
    
    // Kernel invocation code - to be shown later
    
    cudaFree(m_A); cudaFree(m_B); cudaFree(m_C);
}

Allocation of Managed Memory

m_A, m_B  gets initialized on the host

The device performs the actual vector addition



CUDA Unified Memory for different architectures

Prior to compute capability 6.x

– There is no specialized hardware 
units to improve UM efficiency.

– For data migration the full 
memory block needs to be 
copied synchronically by the 
driver.

– No memory oversubscription.

Compute capability 6.x onwards

– There are specialized hardware 
units managing page faulting.

– Data is migrated on demand, 
meaning that data gets copied 
only on page fault.

– Possibility to oversubscribe 
memory, enabling 
larger arrays than the device 
memory size.
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Example: Vector Addition Kernel

// Compute vector sum C = A + B
// Each thread performs one pair-wise addition

__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
  int i = threadIdx.x+blockDim.x*blockIdx.x;
    if(i<n) C[i] = A[i] + B[i];
}

Device Code



Example: Vector Addition Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
 // d_A, d_B, d_C allocations and copies omitted 
 // Run ceil(n/256.0) blocks of 256 threads each
  vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);
}

Host Code

4

The ceiling function makes sure that there 
are enough threads to cover all elements.



More on Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
  dim3 DimGrid((n-1)/256 + 1, 1, 1);
  dim3 DimBlock(256, 1, 1);
  vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);
}
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Host Code

This is an equivalent way to express the 
ceiling function.



__host__
void vecAdd(…)
{
  dim3 DimGrid(ceil(n/256.0),1,1);
  dim3 DimBlock(256,1,1);
vecAddKernel<<<DimGrid,DimBlock>>>(d_A,d_B
,d_C,n);
}

Kernel execution in a nutshell
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GridBlk 0 Blk N-1
• • •

GPUM0
RAM

Mk• • •

__global__
void vecAddKernel(float *A,
     float *B, float *C, int n)
{
   int i = blockIdx.x * blockDim.x
             + threadIdx.x;

   if( i<n ) C[i] = A[i]+B[i];
}



More on CUDA Function Declarations

− __global__ defines a kernel function
− Each “__” consists of two underscore characters

− A kernel function must return void

− __device__ and __host__ can be used together
− __host__ is optional if used alone
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hosthost__host__   float HostFunc() 

hostdevice__global__ void  KernelFunc() 

devicedevice__device__ float DeviceFunc() 

Only callable from 
the:

Executed on 
the:



Integrated C programs with CUDA extensions

NVCC Compiler

Host C Compiler/ Linker

Host Code Device Code 
(PTX)

Device Just-in-Time Compiler

Heterogeneous Computing Platform with
CPUs, GPUs, etc.

Compiling A CUDA Program


