
NERSC Codee Training Series

September 56, 2024

Codee Training:
Write Accelerated Code at Expert Level

Codee: Automated Code Inspection for Modernization and Optimization

1

Schedule

2

Day 1 Thursday 5th, 900 1230 PDT Day 2 Friday 6th, 900 1230 PDT

Codee: Automated Code Inspection for Modernization and
Optimization

● Lecture:
○ Codeeʼs command-line tool

○ Open Catalog of Best Practices for Fortran/C/C

Modernization and Optimization for CPU and GPU

● Demo using Fortran:
○ HIMENO modernization

○ HIMENO optimization through GPU parallelism

● Demo using C/C
○ MATMUL optimization through CPU parallelism

● Hands-on: PI, MATMUL, COULOMB, HIMENO

Codee: Automated Analysis of Large-Scale Fortran/C/C
Codes

● Lecture:
○ Codeeʼs command-line tool using compilation

databases

○ Automated testing of large codes using Codee on

Perlmutter

○ Use case: Optimizing the Weather Research and

Forecasting Model with OpenMP Offload and Codee

● Demo using Fortran:
○ Putting it all together with HYCOM

● Demo using C/C
○ Putting it all together with MBedTLS

● Hands-on: HYCOM, NUCCOR, ATMUX, LULESHmk,

MBedTLS

● Bring your own applications!

Your Main Drivers for Simulation Software?
● Simulation software demands high-speed computations and maintainable code.

● 1. Modernize your code:

○ Adopt modern programming practices to increase code quality and facilitate
maintenance:
■ Update legacy code; e.g.: F77 F2018, C98 C20.
■ Ensure portability across compilers; no vendor-specific language extensions.
■ Leverage new language features; e.g.: Fortran modules, C smart pointers.

○ The modernization process helps find bugs and avoid introducing hidden bugs during
maintenance.

○ As a result, the modernization process helps ensure code correctness.

● 2. Optimize performance:

○ Overall, enforce modernization before addressing performance optimization.

3

Fortran/C/C on NERSC

4

● Widely used in:

○ Aerospace

○ Automotive

○ Climate & Weather

○ Defense

○ Energy & Utilities

○ High Performance Computing

○ Manufacturing

○ Oil and Gas

○ Scientific Research

● Employed by most NERSC users.

Language First appeared in… TIOBE Index 2024

Fortran 1957 10th

C 1972 3rd

C 1985 2nd

Source: https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf

Thoughts of the Fortran community on
modernization

5

“Always use IMPLICIT NONE everywhere. It is amazing how many bugs this can find and avoid compared to the
default typing rules.ˮ

“All subprograms should be CONTAINed. Generally in modules, but also in the main program unit. <...> Again,
amazing how many interface bugs show up when this is enforced.ˮ

“Many many more could be suggested. Here are a few in no specific order that help compilers find more bugs
at compile time, and help programs scale better:

● Always specify intent attributes for dummy arguments.
● Always use assumed shape for array dummy arguments.ˮ

“Always use Standard conforming code. Turn on all warnings (e.g., -std=f2018 Wall with gfortran) and fix any
issues by using Standard conforming code. There are really very few compiler extensions from the Olden Days
that do not have modern, Standard conforming, replacements.ˮ

Source:
https://fortran-lang.discourse.group/t/our-initiative-to-publish-the-fortran-lang-top-10-recommendation-for-fortran-modernization-is-it-really-new-or-even-feasible/7774/18

USE CASE FORTRAN MODERNIZATION

https://fortran-lang.discourse.group/t/our-initiative-to-publish-the-fortran-lang-top-10-recommendation-for-fortran-modernization-is-it-really-new-or-even-feasible/7774/18

6

Top 10 Recommendations for Fortran Modernization

1. Strict compliance
with modern Fortran
standards

Remove legacy features deleted
from recent Fortran standards,
as they might not be supported
by recent compilers, and avoid
compiler-specific extensions,
ensuring that the code remains
compatible across various
development environments.

2. Declare
procedures in
modules

Declare related procedures within
an importable module to enhance
code modularity, reusability, and
readability. This practice also
helps avoid runtime errors related
to implicit interfaces. Separate the
definition of procedures into
modules and their implementation
into submodules, leveraging
incremental compilation to reduce
build times.

3. Restrict data
visibility with
modules

Encapsulate globally accessible
data, such as common blocks,
within modules. This approach
allows for controlled access
interfaces, improving code
readability and minimizing side
effects from global data storage.

4. Improve dummy
arguments
semantics

Enhance the definitions of
dummy arguments to make the
behavior of procedures more
predictable and transparent,
helping avoid common issues
related to incorrect assumptions
about data type, flow, or
structure.

5. Improve data type
consistency and
management

Ensure the consistency of data
types by avoiding implicit typing
and standardizing the code on a
fixed set of real kinds, improving
readability and portability across
different development
environments. Use derived data
types to represent complex
multi-field structures. Leverage
pointers and allocatable arrays for
safer memory handling.

6. Avoid legacy
control-flow
constructs

Replace outdated and
error-prone control-flow
constructs with more robust and
maintainable language features
from recent standards,
improving code maintainability
and reducing the likelihood of
bugs.

7. Enhance source
code semantics

Leverage elements from recent
Fortran standards to further
improve the clarity and intent of
code statements beyond
previous recommendations.

8. Adherence to
code conventions

Establish and adhere to a
consistent coding standard, such
as variable naming rules of
free-form format, to promote
readability and ease
collaboration among developers.

9. Adopt modern
development
practices

Integrate modern development
practices, such as automated
testing, version control, or
dependency managers, to
enhance the quality,
maintainability, collaboration,
and distribution of Fortran
software.

10. Proper C/C
interoperability

Ensure seamless interoperability
between Fortran and C/C to
allow Fortran programs to
effectively interact with a wide
range of systems and libraries
written in other languages (e.g.,
high-performance
environments).

github.com/codee-com/fortran-modernization

USE CASE FORTRAN MODERNIZATION

https://github.com/codee-com/fortran-modernization

Top 20 Checks for Fortran Modernization

7

● M01 Tune compiler flags to mark non-standard and removed features in modern Fortran standards.

● M01 Consider using more standard-compliant compilers like gfortran to flag non-standard and removed features.

● M01 Consider replacing GNU Fortran non-standard constructs to favor portability

● M02 PWR068 Encapsulate external procedures within modules to avoid the risks of calling implicit interfaces.

● M03 PWR073 Transform common block into a module for better data encapsulation.

● M03 PWR069 Use the keyword only to explicitly state what to import from a module.

● M04 PWR008 Declare the intent for each procedure argument.

● M04 PWR070 Declare array dummy arguments as assumed-shape arrays.

● M05 PWR007 Always use implicit none to disable implicit declarations.

● M05 PWR071 Prefer real(kind=kind_value) for declaring consistent floating types.

● M06 PWR063 Avoid using legacy and old-style Fortran constructs.

● M07 PWR003 Explicitly declare pure functions.

● M07 Add an explicit parameter attribute to constant variables.

● M07 PWR072 Add an explicit save attribute when initializing variables in their declaration.

● M10 Consider using Fortran modules instead of C/C header files

github.com/codee-com/open-catalog

USE CASE FORTRAN MODERNIZATION

https://github.com/codee-com/open-catalog

Open Catalog of Best Practices for Modernization and Optimization

8

Check Fortran C C Autofix

Modernization

PWR007 Disable implicit declaration of variables ✓ ✓

PWR068 Encapsulate external procedures within modules to avoid the risks of calling implicit
interfaces ✓

PWR070 Declare array dummy arguments as assumed-shape arrays ✓

Many more!

Optimization

PWR050 Consider applying multithreading parallelism to forall loop ✓ ✓ ✓ ✓

PWR055 Consider applying offloading parallelism to forall loop ✓ ✓ ✓ ✓

PWD006 Missing deep copy of non-contiguous data to the GPU ✓ ✓ ✓

Many more!

github.com/codee-com/open-catalog

https://github.com/codee-com/open-catalog/blob/main/Checks/PWR007
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR068
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR070
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR050
https://github.com/codee-com/open-catalog/blob/main/Checks/PWR055
https://github.com/codee-com/open-catalog/blob/main/Checks/PWD006
https://github.com/codee-com/open-catalog

Codee: Value Proposition

WHAT

Community-guided
Top Recommendations

Open Catalog on
Best Practices

HOW WHERE

9

First Top 10
Recommendations for
Fortran Modernization
published on February

2024

Containing 80+ checks as
of August 2024, with

curated documentation
and examples

Automated analysis of
Codee 2024.3 reported
64.603 checks in WRF
running on Perlmutter

10

Code Domain Metrics with Codee 2024.3.0 Aug. 2024

CP2K
1.3M lines of code

Quantum chemistry and solid state physics
software package

1344 files, 5431 functions, 9549 loops successfully analyzed and 17
non-analyzed files in 13 m 33 s

OpenRadioss
1.1M lines of code

Finite element solver for dynamic event
analysis

3477 files, 6541 functions, 39636 loops successfully analyzed and 0
non-analyzed files in 31 m 6 s

WRF
960K lines of code Weather Research and Forecasting 508 files, 9722 functions, 26519 loops successfully analyzed (64603

checkers) and 0 non-analyzed files in 1 h 17 m 18 s

ICON
646K lines of code

Weather, climate, and environmental
prediction

1143 files, 6959 functions, 7801 loops successfully analyzed (6098
checkers) and 7 non-analyzed files in 9 m 34 s

SIESTA
398K lines of code First-principles Materials Simulation 967 files, 2956 functions, 2254 loops successfully analyzed (3291

checkers) and 25 non-analyzed files in 2 m 16 s

PHASTA
64K lines of code

Parallel Hierarchic Adaptive Stabilized
Transient Analysis of compressible and
incompressible Navier Stokes equations

284 files, 608 functions, 1086 loops successfully analyzed (1420
checkers) and 0 non-analyzed files in 6 m 35 s

HYCOM
44K lines of code HYbrid Coordinate Ocean Model 50 files, 251 functions, 2058 loops successfully analyzed (2965

checkers) and 0 non-analyzed files in 53.85 s

EAP-patterns
4K lines of code

Patterns from an Eulerian cell AMR
application

12 files, 88 functions, 164 loops successfully analyzed and 0
non-analyzed files in 1037 ms

Success Stories using Open Source Software
USE CASE FORTRAN MODERNIZATION

https://github.com/cp2k/cp2k
https://github.com/OpenRadioss/OpenRadioss
https://github.com/wrf-model/WRF
https://gitlab.dkrz.de/icon/icon-model
https://gitlab.com/siesta-project
https://github.com/PHASTA/phasta
https://github.com/HYCOM
https://github.com/lanl/eap-patterns

Codee: Main Features

Static Analysis

Automatically analyze every line of
code to find and fix modernization

and optimization opportunities.

Autofix

Automatically generate fixes for
opportunities, always under the
control of the programmer and

preserving 100% code correctness.

Reports

Get a deeper understanding of
your codeʼs health with

analysis reports.

Self-hosting

Execution on the local system,
retraining full control of your

code and privacy.

CI/CD automation

Integrate with CI/CD systems,
automatically testing every

code change and pull request.

Code Coverage

Obtain code coverage metrics
and discover lines that are not

being analyzed.

Codee provides a systematic, predictable workflow that is a complement to other
software development tools, such as the compiler, profiler, or debugging tools.

11

Codee: Suggested Basic Workflow

5. Autofix

Automatically generate fixes
for certain opportunities.

1. Technical Debt

Quantify the amount of
opportunities identified in

your code.

2. Screening with Ranking

 Identify which checks of the
Open Catalog are applicable,

ordered by priority.

0. Compiler Invocation
 A working compiler

invocation for the code to
analyze.

Manager
Team Lead
Developer

M
L
D

3. ROI

Quantify the development
effort to improve your code.

4. Checks Report

 Get detailed guidance on
how to apply the identified

opportunities.

12

M L D M L D

M L D M L D

M L D

0. Compiler Invocation

13

$ cat -n matmul.f90
1 subroutine matmul(n, A, B, C)
2 double precision, dimension(n, n), intent(in) -: A, B
3 double precision, dimension(n, n), intent(out) -: C
4
5 ! Initialization
6 do i = 1, n
7 do j = 1, n
8 C(i, j) = 0.0
9 end do
10 end do
11
12 ! Accumulation
13 do i = 1, n
14 do j = 1, n
15 do k = 1, n
16 C(i, j) = C(i, j) + A(i, k) * B(k, j)
17 end do
18 end do
19 end do
20 end subroutine matmul

$ gfortran matmul.f90

SUGGESTED BASIC WORKFLOW

1. Technical Debt Report

14

$ codee technical-debt -- gfortran matmul.f90

TECHNICAL DEBT REPORT

This report quantifies the technical debt associated with the modernization of legacy code by assessing the
extent of refactoring required for language constructs. The score is determined based on the number of
language constructs necessitating refactoring to bring the source code up to modern standards.
Additionally, the metric identifies the impacted source code segments, detailing affected files, functions,
and loops.

Score Affected files Affected functions Affected loops
----- -------------- ------------------ --------------
12 1 1 4

TECHNICAL DEBT BREAKDOWN

Lines of code Analysis time Checkers Technical debt score
------------- ------------- -------- --------------------
16 12 ms 12 12

1 file, 1 function, 5 loops successfully analyzed (12 checkers) and 0 non-analyzed files in 12 ms

Score and affected source code

SUGGESTED BASIC WORKFLOW

M L D

2. Screening with Ranking Report

15

$ codee screening -- gfortran matmul.f90

SCREENING REPORT

Lines of code Analysis time # checks Profiling
------------- ------------- -------- ---------
16 13 ms 12 n/a

RANKING OF CHECKERS

Checker Level Priority # Title
------- ----- -------- - ---
PWR039 L1 P27 1 Consider loop interchange to improve the locality of reference and enable vectorization
PWR068 L1 P27 1 Encapsulate external procedures within modules to avoid the risks of calling implicit
 interfaces
RMK015 L1 P27 1 Tune compiler optimization flags to increase the speed of the code
PWR003 L1 P18 1 Explicitly declare pure functions
PWR008 L1 P18 1 Declare the intent for each procedure parameter
PWR070 L1 P18 1 Declare array dummy arguments as assumed-shape arrays
PWR071 L2 P6 2 Prefer real(kind=kind_value) for declaring consistent floating types
PWR007 L2 P6 1 Disable implicit declaration of variables
PWR035 L3 P2 1 Avoid non-consecutive array access to improve performance
RMK010 L3 P0 2 The vectorization model states the loop is not a SIMD opportunity due to strided memory
 accesses

Total checks triggered

Checks ordered by priority

SUGGESTED BASIC WORKFLOW

M L D

3. ROI Report

16

$ codee roi -- gfortran matmul.f90

ROI ANALYSIS SUMMARY

This analysis underscores the tangible benefits Codee brings to the development process, not only in terms of savings
in development effort, but also in realizing significant cost efficiencies for the organization.

Impact on Development Effort:
This report identifies critical areas within the source code that necessitate attention from the development team, and
forecasts a significant reduction in workload by an estimated 223 hours.

Without Codee	With Codee	Hours saved
235 hours | 12 hours | 223 hours

Impact on Cost Savings:
Considering a standard developer's workload of approximately 1800 hours/year, Codee's intervention translates to saving
an equivalent to 0.12 (223h / 1800h) developers working full-time. Assuming an average cost of a developer for the
company (salary + associated costs) of €100,000, this amounts to cost savings of €12,388 (€100,000 x 0.12).

Developer hours/year	Number of devs. saved/year	Developer salary/year	Total costs saved/year
1800 hours | 0.12 | €100,000 | €12,388

ROI CALCULATION BREAKDOWN

<--.>

Saved hours

Saved cost

SUGGESTED BASIC WORKFLOW

M L D

4. Checks Report

17

$ codee checks -- gfortran matmul.f90

CHECKS REPORT

matmul.f90:6:3 [PWR039] (level: L1): Consider loop interchange to improve the locality of reference and enable vectorization
matmul.f90:1:1 [PWR068] (level: L1): Encapsulate external procedures within modules to avoid the risks of calling implicit interfaces
matmul.f90 [RMK015] (level: L1): Tune compiler optimization flags to increase the speed of the code
matmul.f90:1:1 [PWR003] (level: L1): Explicitly declare pure functions
matmul.f90:1:1 [PWR008] (level: L1): Declare the intent for each procedure parameter
matmul.f90:1:1 [PWR070] (level: L1): Declare array dummy arguments as assumed-shape arrays
matmul.f90:1:1 [PWR007] (level: L2): Disable implicit declaration of variables
matmul.f90:2:3 [PWR071] (level: L2): Prefer real(kind=kind_value) for declaring consistent floating types
matmul.f90:3:3 [PWR071] (level: L2): Prefer real(kind=kind_value) for declaring consistent floating types
matmul.f90:13:3 [PWR035] (level: L3): Avoid non-consecutive array access to improve performance
matmul.f90:7:5 [RMK010] (level: L3): The vectorization model states the loop is not a SIMD opportunity due to strided memory accesses
matmul.f90:15:7 [RMK010] (level: L3): The vectorization model states the loop is not a SIMD opportunity due to strided memory accesses

$ codee checks --verbose -- gfortran matmul.f90

CHECKS REPORT

<--.>

matmul.f90:1:1 [PWR007] (level: L2): Disable implicit declaration of variables
 Suggestion: Add IMPLICIT NONE in the specification part of the procedure 'matmul'
 Documentation: https:-/github.com/codee-com/open-catalog/tree/main/Checks/PWR007
 AutoFix:
 codee rewrite --modernization implicit-none --in-place matmul.f90:matmul -- gfortran matmul.f90

<--.>

Checks by location

Detailed information on each check

SUGGESTED BASIC WORKFLOW

M L D

5. Autofix

18

$ codee rewrite --modernization implicit-none --in-place matmul.f90:matmul -- gfortran matmul.f90

Results for file '/home/user/matmul.f90':
 Successfully applied AutoFix to the procedure at 'matmul.f90:1:1' [using insert implicit none]:
 [INFO] Inserted implicit none:
 - matmul.f90:1:1

Successfully updated matmul.f90

$ git diff matmul.f90

 subroutine matmul(n, A, B, C)
+ ! Codee: Made all variable declarations explicit (2024-08-02 13:04:38)
+ implicit none
+ integer -: i
+ integer -: j
+ integer -: k
+ integer -: n
 double precision, dimension(n, n), intent(in) -: A, B
 double precision, dimension(n, n), intent(out) -: C

SUGGESTED BASIC WORKFLOW

M L D

Focus the Analysis: Select a subset of checks I

19

Common options:

 --check-id <id>[,<id-]*
 Focus on specific checks

 --target-arch <arch>
 Focus on multiple checks

 --list-available-checkers
 List all available checks

SUGGESTED BASIC WORKFLOW

20

$ codee checks --target-arch cpu,gpu -- gfortran matmul.f90

<--.>

CHECKS REPORT

matmul.f90:6:3 [PWR039] (level: L1): Consider loop interchange to improve the locality of reference and enable
vectorization
matmul.f90:1:1 [PWR068] (level: L1): Encapsulate external procedures within modules to avoid the risks of calling
implicit interfaces
matmul.f90 [RMK015] (level: L1): Tune compiler optimization flags to increase the speed of the code
matmul.f90:1:1 [PWR003] (level: L1): Explicitly declare pure functions
matmul.f90:1:1 [PWR008] (level: L1): Declare the intent for each procedure parameter
matmul.f90:1:1 [PWR070] (level: L1): Declare array dummy arguments as assumed-shape arrays
matmul.f90:1:1 [PWR007] (level: L2): Disable implicit declaration of variables
matmul.f90:13:3 [PWR050] (level: L2): Consider applying multithreading parallelism to forall loop
matmul.f90:2:3 [PWR071] (level: L2): Prefer real(kind=kind_value) for declaring consistent floating types
matmul.f90:3:3 [PWR071] (level: L2): Prefer real(kind=kind_value) for declaring consistent floating types
matmul.f90:13:3 [PWR055] (level: L3): Consider applying offloading parallelism to forall loop
matmul.f90:13:3 [PWR035] (level: L3): Avoid non-consecutive array access to improve performance
matmul.f90:7:5 [RMK010] (level: L3): The vectorization cost model states the loop is not a SIMD opportunity due to
strided memory--.
matmul.f90:15:7 [RMK010] (level: L3): The vectorization cost model states the loop is not a SIMD opportunity due to
strided memory--.

Focus the Analysis: Select a subset of checks II
SUGGESTED BASIC WORKFLOW

21

$ codee checks --verbose --target-arch cpu,gpu -- gfortran matmul.f90

CHECKS REPORT

<--.>

matmul.f90:13:3 [PWR055] (level: L3): Consider applying offloading parallelism to forall loop
 Suggestion: Use 'rewrite' to automatically optimize the code
 Documentation: https:-/github.com/codee-com/open-catalog/tree/main/Checks/PWR055
 AutoFix (choose one option):
 * Using OpenMP (recommended):
 codee rewrite --offload omp-teams --in-place matmul.f90:13:3 -- gfortran matmul.f90
 * Using OpenACC:
 codee rewrite --offload acc --in-place matmul.f90:13:3 -- gfortran matmul.f90
 * Using OpenMP and OpenACC combined:
 codee rewrite --offload omp-teams,acc --in-place matmul.f90:13:3 -- gfortran matmul.f90

<--.>

Focus the Analysis: Select a subset of checks III
SUGGESTED BASIC WORKFLOW

22

$ codee rewrite --offload omp-teams --in-place matmul.f90:13:3 -- gfortran matmul.f90

Results for file 'matmul.f90':
 Successfully applied AutoFix to the loop at 'matmul.f90:matmul:13:3' [using offloading]:
 [INFO] matmul.f90:13:3 Parallel forall: variable 'C'
 [INFO] matmul.f90:13:3 Loop parallelized with teams using OpenMP directive 'target teams distribute parallel for'
 Fine-tuning suggestions for better performance [using offloading]:
 [TODO] Consider optimizing data transfers of arrays by adding the proper array ranges in data mapping clauses
 Documentation: https:-/github.com/codee-com/open-catalog/tree/main/Glossary/Offloading-data-transfers.md

$ git diff matmul.f90

 ! Accumulation
+ ! Codee: Loop modified by Codee (2024-08-02 13:35:36)
+ ! Codee: Technique applied: offloading with 'omp-teams' pragmas
+ ! Codee: Offloaded loop: begin
+ ! TODO (Codee): Consider optimizing data transfers of arrays by adding the proper array ranges in data mapping
clauses
+ !$omp target teams distribute parallel do shared(A, B, n) map(to: n, A, B) private(j) map(tofrom: C)
schedule(static)
 do i = 1, n
 do j = 1, n
 do k = 1, n
@@ -17,4 +22,5 @@ subroutine matmul(n, A, B, C)
 end do
 end do
 end do
+ ! Codee: Offloaded loop: end
 end subroutine matmul

Focus the Analysis: Select a subset of checks IV
SUGGESTED BASIC WORKFLOW

Use --compiler-driven-mode to generate
pragmas optimized for the target compiler

23

Focus the Analysis: Select a subset of checks V
$ codee checks -- gfortran matmul.f90

CHECKS REPORT

matmul.f90:6:3 [PWR039] (level: L1): Consider loop interchange to improve the locality of reference and enable
 vectorization
matmul.f90:1:1 [PWR068] (level: L1): Encapsulate external procedures within modules to avoid the risks of calling
 implicit interfaces
matmul.f90 [RMK015] (level: L1): Tune compiler optimization flags to increase the speed of the code
matmul.f90:1:1 [PWR003] (level: L1): Explicitly declare pure functions
matmul.f90:1:1 [PWR008] (level: L1): Declare the intent for each procedure parameter
matmul.f90:1:1 [PWR070] (level: L1): Declare array dummy arguments as assumed-shape arrays
matmul.f90:1:1 [PWR007] (level: L2): Disable implicit declaration of variables
matmul.f90:2:3 [PWR071] (level: L2): Prefer real(kind=kind_value) for declaring consistent floating types
matmul.f90:3:3 [PWR071] (level: L2): Prefer real(kind=kind_value) for declaring consistent floating types
matmul.f90:13:3 [PWR035] (level: L3): Avoid non-consecutive array access to improve performance
matmul.f90:7:5 [RMK010] (level: L3): The vectorization model states the loop is not a SIMD opportunity due to
 strided memory accesses
matmul.f90:15:7 [RMK010] (level: L3): The vectorization model states the loop is not a SIMD opportunity due to
 strided memory accesses

$ codee checks --check-id PWR007 -- gfortran matmul.f90

CHECKS REPORT

matmul.f90:1:1 [PWR007] (level: L2): Disable implicit declaration of variables

SUGGESTED BASIC WORKFLOW

Focus the Analysis: Select a subset of code

24

$ codee checks matmul.f90 -- gfortran matmul.f90
 Filter by file

$ codee checks matmul.f90:matmul -- gfortran matmul.f90
 Filter by function

$ codee checks matmul.f90:13 -- gfortran matmul.f90
 Filter by loop

$ codee checks matmul.f90:7,13 -- gfortran matmul.f90
 Filter by multiple elements

SUGGESTED BASIC WORKFLOW

25

Main Takeaways
● Simulation software demands maintainable and high-speed Fortran/C/C code.

● 1. Modernize your code to ensure correctness:
○ Update legacy code; e.g.: F77 F2018, C98 C20.
○ Ensure portability across compilers; no vendor-specific language extensions.
○ Leverage new language features; e.g.: Fortran modules, C smart pointers.

● 2. After that, address optimization.

● Customize the analysis to your needs:
○ Modernization: codee --check-id <id> / codee --only-categories modern
○ CPU optimization: codee --target-arch cpu
○ GPU optimization: codee --target-arch gpu

● Look up the Open Catalog and leverage Codeeʼs autofix capabilities to improve the code:
○ Modernization autofix: codee rewrite --modernization
○ Optimization) CPU OpenMP autofix: codee rewrite --multi omp-for

Hands-on Demos on Perlmutter NERSC

26

● Live Demo #1 HIMENO modernization
● Live Demo #2 HIMENO optimization through CPU parallelism
● Live Demo #3 MATMUL optimization through GPU parallelism

Hands-on Labs on Perlmutter NERSC
Step-by-step guides available at docs.codee.com:

● PI offloading to GPU at Perlmutter (C/C)

● MATMUL offloading to GPU at Perlmutter (C/C)

● COULOMB offloading to GPU at Perlmutter (C/C)

● HIMENO modernization (Fortran)

● HIMENO optimization through CPU parallelism (Fortran)

● HIMENO optimization through GPU parallelism on NVIDIA/Cray Compilers (Fortran)

http://docs.codee.com
https://docs.codee.com/guides/c-c++/pi
https://docs.codee.com/guides/c-c++/matmul
https://docs.codee.com/guides/c-c++/coulomb
https://docs.codee.com/guides/fortran/modernization/himeno
https://docs.codee.com/guides/fortran/optimization/himeno
https://docs.codee.com/guides/fortran/optimization/himeno_gpu

codee_com

/codee-com/

www.codee.com

info@codee.com

Subscribe: codee.com/newsletter/

Spain

Automated Code Inspection for
Modernization and Optimization

27

http://www.codee.com
mailto:info@appentra.com
https://www.appentra.com/blog/newsletter/

