

De Novo Protein Design

We are transitioning from physically based models (Rosetta) to deep learning methods (RFdiffusion, ProteinMPNN)

- 1. Overview of New Methods
- 2. The Design Frontier

Can we design a neural architecture that models all molecules in the PDB?

Protein Small Molecule Complex Prediction

Complexes that are dissimilar to training dataset

Our deep-learning toolkit for protein design

De novo protein design using RFdiffusion

Watson et al, 2023. PMID: 37433327Z

Inspired by deep-learning methods for generating synthetic images. e.g. DALL-E

Synthetic image trajectory from NVIDIA

Shape matching binders to TNF superfamily receptors

RFdiffusion generates shape matched binders to TNFR1

Partial diffusion improves shape complementarity and binding affinity Binders can be retargeted to other family members by partial diffusion

A.		\rightarrow		Original		Retargete	d
JA COL				TNFR1 binder	TNFR2 binder	OX40 binder	4-1BB binder
		T I	TNFR1	16	n.b.	n.b.	n.b.
		У т	TNFR2	n.b.	0.058	n.b.	n.b.
			OX40	n.b.	n.b.	24	n.b.
and the sec		1932	4-1BB	n.b.	n.b.	n.b.	64
	Initial binder: Partially diffused binder:	K _p = 16 nM K _p = 9 pM		TNFR1	TNFR2	OX40	41-BB

RFdiffusion for antibody design

Start from random noise placed Cryo-EM confirms accuracy around chosen target epitope of diffused anti-HA antibody Model binds to hotspots through designed CDR loops

Potent anti-tumor immunomodulators

IL-21 mimic (21h10)

with Dougan Lab (Dana Farber)

Design of peptide/disordered protein binding

Design of peptide-binding proteins via RFdiffusion

Diffused peptide binders have picomolar affinites

Design strategy for binding amyloid forming peptides

500 750 1000 1250 1500 1750 2000 2250 2500 Time (s)

Blocking amyloid formation

with Knowles Lab (Cambridge)

Designed binders for native disordered proteins function in cells

General approach for targeting disordered proteins

Protein	Description	Ctrl	aZFC-low	aZFC-high
ZFC3H1	PAXT complex	0	0	27 (19%)
MTR4	PAXT complex	8 (11%)	5 (5.8%)	35 (37%)
BUB3	Mitotic checkpoint	3 (13%)	3 (13%)	23 (84%)
ZN207	Mitotic checkpoint	2 (2.7%)	3 (5.4%)	13 (14%)
RBM12	RNA processing	4 (3.8%)	6 (6.3%)	43 (43%)
RBM26	RNA processing	3 (3.6%)	2 (3.7%)	47 (42%)

Design: Kejia Wu Cell assays/Mass spec the Emmanuel Derivery lab (UK)

number indicates exclusive unique peptide count

Design of transmembrane nanopore sensors

Design of transmembrane beta barrel nanopores

10 Strands

12 Strands

-60

-100

-50

0

Voltage (mV)

50

100

Samuel Lemma, Sagardip Majumder, Carolin Berner, Anastassia Vorobieva

Ligand gated nanopores

Gated nanopore without cholic acid

Gated nanopore with cholic acid

Design of protein nanomaterials

First approved de novo designed medicine!

- June 29: South Korea approved SKYCovione for use in adults!
- Completed a multinational Phase 3 trial with 4,037 adults
- SKYCovione[™] generated ~3x more neutralizing antibodies
- Antibody conversion rate: **98%** for SKYCovione (v.s. 87%)
 - Among subject ≥65 years of age: 95% for SKYCovione (v.s. 79%)
- Comparable levels of T-cell activation
- No serious adverse reactions
- Heterologous booster trials now underway

SKYCovione[™] employs IPD's self-assembling protein nanoparticle technology and GSK's pandemic adjuvant How to break symmetry

1. Pseudo-symmetry (Programmable assembly) 2. Quasi-symmetry (Multi-state assembly)

1. Pseudo-symmetry (T=4 ico-sym cage) x20 x20 x12 Ico_{T=4}-4 n m O AAV 20nm

S. Lee* & R. Kibler et al., *bioRxiv* 2023 (**currently Assistant Prof.* @ POSTECH, South Korea)

Resolution: ~10A

Expandable nanomaterials

Building blocks:

EM structures:

Tim Huddy, Yang Hsia, Ryan Kibler

Create proteins that solve modern challenges in medicine, technology & sustainability.

Medicine	Technology	Sustainability
Vaccines & Antivirals	Nanoscale Manufacturing	Plastic Degradation
Cancer Immunotherapy	Protein-Silicon Devices	Carbon Sequestration
Drug Delivery Systems	Bio-Based Computers	Artificial Photosynthesis

Acknowledgements

RoseTTAfold: Minkyung Baek, Frank DiMaio, Jue Wang, Rohith Krishna

RFdiffusion: Joe Watson, David Juergens, Nate Bennett, Brian Trippe, Jason Yim, Helen Eisenach, Woody Ahern, Preetham Venkatesh, Susana Vazquez Torres

Protein binding: Longxing Cao, Brian Coventry, Kejia Wu, Wei Yang, Inna Goreshnik, Derrick HIcks

Peptide binding: Danny Sahtoe, Hannah Han, Kejia Wu, Hua Bai, Susana Vazquez Torres, Preetham Venkatesh

Design of mineralization: Harley Pyles, Amijai Sargovi

Enzyme Design: Andy Yeh, Anna Lauko, Sam Pellock

Protein Logic: Basile Wicky, Kirsten Thompson

DNA binding: Cameron Glasscock, Robert Peccaro, Ryan McHugh

Delivery & vaccine platforms: Ryan Kibler, Sangmin Lee, Shunzhi Wang, Neil King

Nanopore sensors: Samuel Lemma, Sagardip Majumder, Carolin Berner, Anastassia Vorobieva, Alexis Courbet, Jinwei Xu

Design of conformational change: Arvind Pillai, Adam Broerman, Florian Praetorius, Phil Leung

Protein-protein interaction mapping: lan Humphreys, Qian Cong

IPD: Lynda Stuart, Lance Stewart, Ian Haydon, Luki Goldschmidt, Core R&D Labs

NSERC!!!