
1

Best Data
Practices at
NERSC

Lisa Gerhardt, Lisa Claus, Steve Leak

Dec 5, 2024

2

Managing Data at NERSC
Most common workflow:
• Data created on

SCRATCH by jobs
• Moved to CFS for

medium-term analysis
• Moved to HPSS for

long-term storage
It's every user's responsibility
to manage their data!

3

Learning objectives
• NERSC file storage systems

o Which systems are best suited to which usage scenarios
• Data management mechanisms

o Best-practices to most-effectively manage your data
• Available tools
• Q&A

4

A Few Acronyms Defined
• IO (also I/O): creating, reading, writing, listing, moving, copying and deleting files and

directories.
• CFS (Community File System): large-scale file system for sharing project data
• HPSS (High Performance Storage System): huge tape archive at NERSC
• DTN - Data Transfer Node - optimized for data movement
• DVS - Data Virtualization Service (DVS) is an I/O forwarding service that works by

projecting a parallel file system, eg CFS, /global/common and $HOME, to compute
nodes

• UNIX - Unix is a family of multitasking, multi-user computer operating systems. Linux is
a form of Unix.

• POSIX - Portable Operating System Interface, is a set of standards that define how
operating systems interact with applications (Linux complies with POSIX)

• ACLs - Access Control Lists - fine-grained control over who can read/write a file, via
setfacl/getfacl

• OST - Object Storage Targets (disks)

5

Overview NERSC storage systems
• $SCRATCH - Perlmutter Scratch

o Every User has its personal space on SCRATCH:
/pscratch/sd/FirstLetterOfUserName/YourUserName

o Perlmutter scratch is available to all Perlmutter compute nodes and is tuned for high
performance

• CFS - Community File System
o Every NERSC project has an associated Community directory and Unix group:

$CFS/<your_project_name>
o CFS allows sharing of data between users, systems, and the "outside world"

• HPSS - High Performance Storage System
o By default every user has an HPSS account
o HPSS is intended for long term storage of data that is not frequently accessed

• HOME
o Every User has its personal small space on $HOME

• Global Common File System
o Every NERSC project has a directory on /global/common/software/<your_project_name>
o Global Common is optimized for software installation

6

Data Lifecycle at NERSC
• Most common pattern is data starts on $SCRATCH and

moves to CFS and then to HPSS
• $SCRATCH is for data being actively computed against
• CFS is for data that will be accessed in this year or

maybe the next
• HPSS is for important data you need to keep long term
• As performance increases, capacity decreases and data

must migrate to another layer

7

Choosing the right storage for your data
• (Almost) All job I/O should happen on

$SCRATCH
• Don't do I/O at scale on CFS
• CFS is best for actively-used data (but not

source code)
• Put source code and conda environments in

/global/common/software (or better still, a
container)

• Not using it for a while? Bundle it into big-ish
(100GB->2TB) tar files and store on HPSS

• $HOME only for small scale tests
• Have an off-NERSC copy of everything

important!

8

Job I/O to $SCRATCH

• Short, quick path
between
computes and a
big, fast,
filesystem

• Supports parallel
I/O (file locking)

• Short-term
storage!

9

$SCRATCH
• Big: 20TB soft quota, 30TB hard quota

o Over soft quota: job won't start
o Over hard quota: writes fail

• Fast: Highly parallel, all-flash, 6TB/s
aggregate bandwidth

• Full POSIX:
o File locking (for parallel I/O)
o MPI-IO
o ACLs

• Handles big and small files and I/O
operations well
o input and output data
o config files and scripts
o compilation

• Not huge: full scientific datasets can
be hundreds or thousands of TB -
$SCRATCH is for I/O, not storage

• No backups:
o Anything deleted (or purged) is

gone
o In event of catastrophic disk

crash, data may not be
recoverable

• Purged

10

$SCRATCH tips

• Optimize performance with striping
o https://docs.nersc.gov/performance/io/lustre/#nersc-file-striping-recommendations
o Splits the file across multiple OSTs (disks)
o By default, data on 1 OST, ideal for small files and file-per-process I/O
o Single shared-file I/O should be striped according to its size
o Helper scripts

stripe_small, stripe_medium, stripe_large
o Manually query with

lfs getstripe <path>
o Set striping on a directory

• New files will automatically pick it up
• Copy files in to inherit the striping

1. MPI-IO on Lustre: https://www.sys.r-ccs.riken.jp/ResearchTopics/fio/mpiio

https://docs.nersc.gov/performance/io/lustre/#nersc-file-striping-recommendations

11

TL; DR
• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale on CFS
• CFS is best for actively-used data (but not source code)
• Put source code and conda environments in /global/common/software (or

better still, a container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and

store on HPSS
• $HOME only for small scale tests
• Have an off-NERSC copy of everything important!

12

Data on CFS

• Capacity-oriented
filesystem, huge,
robust

• Longer, indirect
(via DVS) path to
compute nodes
o CFS is not suited

for job I/O at
scale

13

CFS
● Huge: Currently 114 PB, 33 PB more coming soon

○ Large block size: great for files >>1MB
● Robust:

○ multiple layers of redundancy for reliability
○ daily snapshots retained for 7 days - if the

file existed yesterday, you can recover from
an accidental deletion

● Never purged, readily accessible
● Projects can split their space allocations between

multiple directories and give separate working
groups separate quotas

● Data dashboard:
https://docs.nersc.gov/filesystems/quotas/#the-data-dashboard

● Full POSIX when directly mounted
○ ie login nodes, DTNs (but not Perlmutter

compute nodes)

• Configured for capacity over
performance

o (Still pretty fast, but not
$SCRATCH fast)

o Large block size - inefficient for
small files, eg source code

• Not directly mounted on Perlmutter
compute nodes

o Mounted via an I/O forwarding
service named DVS (more on that
next), which imposes some
constraints - not suitable for most
job I/O

• Not backed up - make sure you have a
copy of data, somewhere else

https://docs.nersc.gov/filesystems/quotas/#the-data-dashboard

14

Making Sharing Data Easier on CFS
• Sharing in space with large groups is hard, we made tools

15

Data Dashboard Demo

16

Adjusting CFS Quotas in IRIS (Demo)
• Projects can spread their CFS quota across multiple directories. Each

row is a “top level” directory, i.e. path is “/global/cfs/cdirs/<directory>”

17

PI Toolbox: my.nersc.gov/pitools/

https://my.nersc.gov/pitools/

18

A bit about DVS
• DVS is an I/O forwarder developed by Cray

o DVS nodes mount the filesystem, and "project" it to compute
nodes

• DVS is mechanism for how you access these file systems
on compute nodes. It is used to access home, common,
and CFS

• Designed to deliver file system contents at scale
• Long history of deployment at NERSC, went live on

Perlmutter on June 8, 2023
• Used only for compute nodes, logins have a native client

mount

19

DVS
• Can provide filesystem access to

thousands of nodes
• Decouples the filesystem from

issues on Perlmutter
o Using DVS on Perlmutter has

greatly improved system and
file system stability

• I/O at scale to a Read/Write
-mounted filesystem is problematic
o Using a read-only mount point

can alleviate this
• Does not fully support POSIX

o No file locking (shared-file
writing via MPI-IO is not safe,
HDF5 will complain and fail)

o ACLs disable caching
• chmod is fine
• setfacl will cause

subsequent accesses to
be very slow

o No mmap

20

How DVS works

• Perlmutter has 24 gateway nodes that serve as DVS servers
• Each server can work 1000 I/O threads at once
• Can cache data to dramatically improve performance at large scales
• Two service modes:

o Read / Write (RW): gateway server is determined when file is
created (hash of inode), stays constant, zero cache

o Read Only (RO): file can be served by all gateways, stays in cache
for 30 seconds

• How to get the benefits (and avoid the limitations) of DVS:
https://docs.nersc.gov/performance/io/dvs/#best-practices-for-dvs-performance-at-scale

https://docs.nersc.gov/performance/io/dvs/#best-practices-for-dvs-performance-at-scale

21

DVS with read-write mount ($HOME, CFS)

• Eg: a 100-node job using conda
environment in $HOME
o 12,800 processes all try to read

/global/homes/e/elvis/.conda
o No cache, so it is fetched from

the filesystem 12,800 times
o The DVS server that "owns" that

file drowns under the load, while
your processes wait in line

o The job progresses only very
slowly, and may fail (and other
jobs using that server might be
impacted too)

22

DVS with read-only mount (/global/common)

• Eg: a 100-node job using conda
environment in /global/common
o 12,800 processes are spread

across 24 DVS servers
o /global/homes/e/elvis/.conda

gets fetched once and cached
o Load on the DVS servers stays low
o Load on the filesystem stays low
o The job continues almost

immediately

note that this y-axis goes 1/10 as high!

23

Read-only mount of CFS

• CFS also has a read-only mount point on
Perlmutter: /dvs_ro/cfs/cdirs/
(the RW one is /global/cfs/cdirs)

• $SCRATCH is still faster .. BUT if your
input data is:
o too big for $SCRATCH, and/or:
o used by multiple people in your

project
• .. then you might benefit from reading it

directly from /dvs_ro/cfs/cdirs

24

TL; DR
• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale on CFS
• CFS is best for actively-used data (but not source code)
• Put source code and conda environments in /global/common/software (or

better still, a container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and

store on HPSS
• $HOME only for small scale tests
• Have an off-NERSC copy of everything important!

25

Software on
/global/common
• Small block size,

all-flash, mounted
read-only on
compute nodes
(read-write on logins)

• Benefits from DVS
caching, multiple
DVS nodes

26

/global/common/software

• Especially good for python / conda environments!
conda create --prefix /global/common/software/myproject/myenv

https://docs.nersc.gov/development/languages/python/nersc-python/#moving-your-conda-setup-to-globalcommonsoftware

• Python startup involves loading lots of modules, which involves looking
in all of the directories in LD_LIBRARY_PATH - lots of disk access

• The read-only DVS mount of /global/common/software mitigates most
of this

• Related tip:
o Don't load a conda environment at login! (via

.bashrc/.bash_profile). It will be loaded for every Slurm job too.

https://docs.nersc.gov/development/languages/python/nersc-python/#moving-your-conda-setup-to-globalcommonsoftware

27

Software in containers
• NERSC supports Shifter and Podman (newer, solves some limitations of

Shifter). Both provide similar functionality to Docker
o https://docs.nersc.gov/development/podman-hpc/overview/
o https://docs.nersc.gov/development/shifter/how-to-use/

• How do they help?
o Software is in the container - vastly reduces load on filesystem
o Also: consistent environment each run, even if Perlmutter software

stack changes -> reproducibility benefits

Podman

Shifter

Python benchmark compared by filesystem or
container, over increasing node count

https://docs.nersc.gov/development/podman-hpc/overview/
https://docs.nersc.gov/development/shifter/how-to-use/

28

TL; DR
• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale on CFS
• CFS is best for actively-used data (but not source code)
• Put source code and conda environments in /global/common/software (or

better still, a container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and

store on HPSS
• $HOME only for small scale tests
• Have an off-NERSC copy of everything important!

29

HPSS

https://docs.nersc.gov/filesystems/archive/

https://docs.nersc.gov/filesystems/archive/
https://docs.google.com/file/d/18kMT9j0pnHP8tP34qpsAWJgJIGRcj8hz/preview

30

HPSS Is a Tape System

• All data in HPSS eventually ends up on tape
o Transfers in go first to disk cache, so they are very quick

• Tape is linear media
o Data cannot be written anywhere, only appended at end
o Reading and writing are sequential, not random-access
o Robot must fetch tape, load it into drive, read forwards until file is reached, then

read file
• Number-of-files has bigger impact on access performance than number-of-GB

• If you are retrieving more than ~100 files, please order your retrievals
by tape position
o NERSC has a helper script and instructions to help you sort

31

HPSS Best Practices
• Store files as you intend to extract them

o Backup to protect against accidental deletion: use htar to bundle up each
directory

o Archiving data mirror: bundle by month data was taken or detector run
characteristics, etc.

• Optimal size of bundles is currently 100s of GB
o Larger than >1 TB retrieval is prone to interruption

• User xfer queue for long running transfer
o Archiving during compute job only gets single stream data movement AND costs

allocation hours
• Make sure your data gets archived

o Collect log info when running htar AND check it for error reports (especially before
deleting original data)

o can also calculate checksums after the fact or enable during transfer

32

Checking HPSS Usage
On iris.nersc.gov

33

Checking HPSS Usage

On the command line with “showquota”:

34

TL; DR
• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale on CFS
• CFS is best for actively-used data (but not source code)
• Put source code and conda environments in /global/common/software (or

better still, a container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and

store on HPSS
• $HOME only for small scale tests
• Have an off-NERSC copy of everything important!

35

$HOME
• All-flash filesystem (fast access)
• Small block size (good for small files -

source code, scripts, etc)
• Backed up

o Daily snapshots
o e.g. my homedir is at

/global/homes/e/elvis/.snapshots/2024-02-19

o (note: you can't see .snapshots with
ls, but you can cd to it)

o Also backed up to tape
approximately monthly

• Not for large I/O (relatively lower
bandwidth)

• Small - not intended for data
storage

• Not suitable for running jobs against
• Avoid making your conda

environments here, particularly if
you will use them in compute jobs!

36

TL; DR
• (Almost) All job I/O should happen on $SCRATCH
• Don't do I/O at scale on CFS
• CFS is best for actively-used data (but not source code)
• Put source code and conda environments in /global/common/software (or

better still, a container)
• Not using it for a while? Bundle it into big-ish (100GB->2TB) tar files and

store on HPSS
• $HOME only for small scale tests
• Have an off-NERSC copy of everything important!

37

Manage your data!

• It's every user's
responsibility to
manage their data!

• Different storage systems
are optimized for different
parts of the data lifecycle

• NERSC provides tools to
help you manage your data
(docs.nersc.gov has a
"Managing Data" section to
help you use them)

38

Q&A

