
NUG Community Call – June 20, 2024

Enabling CUDA-aware MPI on Perlmutter
to accelerate scientific applications

Mukul Dave
mhdave@lbl.gov

NESAP for Simulation Postdoc,
National Energy Research Scientific Computing Center (NERSC),
Lawrence Berkeley National Laboratory

2

GPUs speed up applications through higher
computational throughput…

… but we’d like to use them optimally to get maximum speedups.

https://developer.nvidia.com/blog/multi-gpu-programming-with-standard-parallel-c-part-1/

3

Communication between GPUs is a major bottleneck

Higher throughput of computation means increasingly larger
amounts of data to be transferred between GPUs.

Accelerating communication can provide a significant boost to the overall performance.

https://developer.nvidia.com/blog/multi-gpu-programming-with-standard-parallel-c-part-1/

4%

Communication (30%)
Compute kernels (70%)

Timeline

4

CUDA-aware MPI makes GPU-GPU communication
easy to program and more efficient

In this talk:

● What is CUDA-aware MPI?

● How does it accelerate communication?

● How do you enable and test it on Perlmutter?

● What is the performance benefit?

Inputs and guidance from: Daniel Margala, Kevin Gott, and Brandon Cook @ NERSC.

Inspired heavily from the technical blog by Jiri Kraus @ NVIDIA:
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi

https://developer.nvidia.com/blog/introduction-cuda-aware-mpi

5

Unified Virtual Addressing combines host and GPU
memory into a single virtual address space

6

By using UVA,
CUDA-aware MPI accepts GPU buffers as input

no GPU-aware MPI

with GPU-aware MPI

This is easier to program, what about performance?

7

Data buffers can be directly copied between GPUs
without staging through the host

This cuts the overheads from
extra buffer copies on the host.

8

Perlmutter GPU node has four GPUs and four NICs

● NVLink directly connects the four GPUs on a node with each other.
● The GPUs and NUMA domains have an “inverse” order of affinity.

9

Enabling CUDA-aware MPI
with Cray MPICH and compiler wrappers

At compile time:

$ export CRAY_ACCEL_TARGET=nvidia80

At run time:

$ export MPICH_GPU_SUPPORT_ENABLED=1

These are set by default on Perlmutter.

https://docs.nersc.gov/development/programming-models/mpi/cray-mpich/#cuda-aware-mpi

https://docs.nersc.gov/development/programming-models/mpi/cray-mpich/#cuda-aware-mpi

10

But the process-GPU affinities need to be set manually
as SLURM cgroups doesn’t work well with CUDA IPC

#SBATCH --ntasks-per-node=4
#SBATCH --gpus-per-node=4
#SBATCH --gpu-bind=none

pin to closest NIC to GPU
export MPICH_OFI_NIC_POLICY=GPU

set ordering of CUDA visible devices inverse to
local task IDs for optimal affinity
srun -N 2 -n 8 --cpus-per-task=32 --cpu-bind=cores bash -c "
 export CUDA_VISIBLE_DEVICES=\$((3-SLURM_LOCALID));
 ./exe inputs"

For optimal affinity, reverse the order of GPUs assigned to the MPI processes
and pin processes to the NICs closest to the assigned GPU.

See docs for more info:
https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html
https://slurm.schedmd.com/sbatch.html

https://cpe.ext.hpe.com/docs/mpt/mpich/intro_mpi.html
https://slurm.schedmd.com/sbatch.html

11

Reduces wall times by 20% for the
ERF atmosphere modeling code

Weak scaling of an atmospheric boundary layer simulation using ERF on Perlmutter

 The domain size is 128x128x512 for a single GPU;
 this is progressively scaled up to 2048x1024x512 for 128 GPUs (over 32 nodes).

Elapsed
Time (s)

No. of GPUs

no GPU-aware MPI

with GPU-aware MPI

12

P2P transfers are identified by profiling
with Nsight Systems

13

Summary and future direction

● CUDA-aware MPI allows transferring GPU buffers through MPI.

● It can accelerate multi-GPU communication on Perlmutter by directly transferring data buffers
between GPU devices, bypassing the hosts.

● This requires manually setting the CPU-GPU-NIC affinities in SLURM.

● Using the NVSHMEM / NCCL GPU communication libraries would also require these settings.

● New updates in SLURM may allow cgroups to work well with the CUDA IPC (inter-process
communication) layer, preventing the need for users to manually implement the binding.

● Contact NERSC at https://help.nersc.gov/ with questions and feedback on application performance.

https://help.nersc.gov/

14

Have you used CUDA-aware MPI on Perlmutter?

● Have you used it to code your application? What has been your experience?

● If you are a user/scientist, does your application enable GPU-aware MPI?

● Did this presentation include new information or were you already aware about it?

