nnPAﬁALLfLW€RE l mxwﬁﬂﬁ NEeR ‘.appen‘tra

Parallelware Tools ATMUX Quickstart

What is Parallelware Analyzer?

What is Parallelware Trainer?

Quickstart with ATMUX

Parallelware tools provide an innovative solution for the development of C/C++/Fortran parallel
code targeting multicore CPUs and GPUs. Its new static code analysis specializing in parallelism
helps to accelerate the software run-time by reducing development effort through detection and
generation of bug-free parallel code.

What is Parallelware Analyzer?

Parallelware Analyzer is a new static code analyzer specializing in parallelism. It consists of a suite
of command-line tools to detect and prevent parallel bugs originated by data races and data
movement issues, and get best-practice recommendations to develop faster software.
Parallelware Analyzer provides the following command-line tools for the key stages of the parallel
development workflow:
e pwreport: provides a high-level overview of your code: summary of parallelized regions,
defects, recommendations and opportunities..
e pwcheck: looks for defects such as race-conditions and issues recommendations on
best-practices and performs data-race analysis.
e pwloops: provides insight into the parallel properties of loops found in the code which
constitute opportunities for parallelism.
e pwdirectives: provides guided generation of parallel code for multicore CPUs and GPUs,
with OpenMP and OpenACC, using multithreading, offloading and tasking.

What is Parallelware Trainer?

Based on the same Parallelware technology used by Analyzer, Parallelware Trainer provides a
graphical Integrated Development Environment designed to help get started parallelizing code
and experimenting with different parallel implementations. Many functionalities provided by
Parallelware Analyzer are available through graphical interaction in Trainer.

https://www.appentra.com/products/parallelware-analyzer/
https://www.appentra.com/products/parallelware-trainer/

Wit i gy 2ppentra

Quickstart with ATMUX

To get started with the Parallelware tools we will use the ATMUX C example. We will start by
using Parallelware Analyzer to successfully analyze the code, follow recommendations and get
opportunities for parallelization. Then, we will move to Parallelware Trainer to implement
different parallel versions of ATMUX and compare their performance through experimentation.

1. Download Parallelware Analyzer and its license file, then uncompress and move inside the
license file with name pwa.lic:

$ tar xvfz pwanalyzer-0.16.0_linux-x64.tgz

$ mv pwanalyzer-eap.lic pwanalyzer-0.16.0_linux-x64/pwa.lic

If you are using a supercomputer, you may already have Parallelware tools available as a
Environment modules (e.g.,module load pwanalyzer, module load pwtrainer).

2. Download and uncompress the ATMUX code.

$ tar xvfz ATMUX.tar.gz && cd ATMUX

3. Use make to build and run ATMUX:

The Makefile is designed to run on your local machine. If you are using a supercomputer
consider adjusting it accordingly to perform the execution on the corresponding node.

4. Run pwreport to get a first overview of the code:

$ pwreport atmux.c
@ files successfully analyzed and 1 failure in 34 ms (pass
--show-failures for error details)

SUGGESTIONS

1 file could not be analyzed, get more information by enabling error
reporting:

pwreport --show-failures atmux.c

Some files fail due to missing includes. You should pay attention to the suggestions
outputted by the different tools. In this case you are instructed to use the
--show-failures flags.

5. Re-runwiththe --show-failures flag:

$ pwreport atmux.c --show-failures

error: file was not processed correctly: 'atmux.c'
atmux.c:6:10: fatal error: 'CRSMatrix.h' file not found

https://www.appentra.com/download/8899/

#tinclude <CRSMatrix.h>

N

LTSI NTNPNT NPT NTNTNT T

6. You need to add the lib directory to the include path. Compiler flags are passed to all
Parallelware Analyzer tools after all other arguments and separated by “--”, following the
GCC/Clang syntax:

$ pwreport atmux.c -- -I 1lib

CODE COVERAGE
Analyzable files:
Analyzable functions:
Analyzable loops:
Parallelized SLOCs:

SUMMARY
Total defects:
Total recommendations:
Total opportunities:
Total data races:
Total data-race-free:

Notice that the code coverage is quite poor. There are also no opportunities for
parallelization. However, there are 3 recommendations available and, in many cases,
following recommendations can increase the code coverage which in turn yields more
parallelization opportunities.

7. Runpwcheck to get information about those recommendations:

$ pwcheck atmux.c -- -I 1ib

[PWRO11] atmux.c:31:5 outline loop to increase compiler and tooling
code coverage

31: for (i =0; i < n; i++) {

SUGGESTION: consider extracting the loop to a dedicated
function

The PWRO011 recommends outlining loops to dedicated functions to improve tooling
coverage. Doing this for hotspots should help to detect more parallelization
opportunities.

8. Follow the recommendation by outlining the loop at line 31 to a function called compute
and replace the loop by an invocation to it:

https://www.appentra.com/knowledge/checks/pwr011/

$ vim atmux.c

Qéid compute(double *val, double *x, double *y, int *col ind, int
*row_ptr, int n) {

AT X
9; i < n; i++) {

= row_ptr[i]; k < row_ptr[i + 1]; k++) {
y[col_ind[k]] = y[col_ind[k]] + x[1i] * val[k];

compute(val, x, y, col_ind, row_ptr, n);

int main(int argc, char *argv[]) {

This is a really simple code for which we know that the hotspot corresponds to the loop
at line 31. For real applications, profiling will be required to locate hotspots.

9. Run pwreport again and notice how following one recommendation has enabled the
detection of two new parallelization opportunities in two loops of the code:

$ pwreport atmux.c -- -I 1lib

CODE COVERAGE
Analyzable files: / 1 (100 %)
Analyzable functions: / 10 (10 %)
Analyzable loops: / 4 (50 %)
Parallelized SLOCs: / 122 (0 %)

SUMMARY
Total defects:
Total recommendations:
Total opportunities:
Total data races:
Total data-race-free:

10. Run pwloops to get information about those parallelization opportunities:
$ pwloops atmux.c -- -I 1lib

Analyzable Patterns Opportunity Auto-Parallelizable Parallelized

:compute:20:3 sparse multi
:compute:21:5 sparse simd
:atmux:38:5
:main:78:5

11. You can also use pwloops to visualize the source code annotated with opportunities. You
can do so filtering by function to narrow the output to the relevant functions:

$ pwloops atmux.c --code --function atmux.c:compute -- -I lib

Line Opp atmux.c

void compute(double *val, double *x, double *y, int *col _ind,

int *row_ptr, int n) {

17 int i, k;

18

19 /]y = AT X

20 P for (i =0; i < n; i++) {

21 for (k = row_ptr[i]; k < row_ptr[i + 1]; k++) {

22 y[col _ind[k]] = y[col_ind[k]] + x[i] * val[k];

23

24

25

Filtering by function comes very handy to focus on the hotspots detected through
profiling.

12. You can use pwdirectives to generate parallel versions of your code. For instance, to
parallelize the loop at line 20 of atmux.c using defaults settings (OpenMP multithreading):

$ pwdirectives atmux.c:20 -o atmux_omp.c -- -I lib
Compiler flags: -I lib
Warning: defaulting to OpenMP CPU multithreading paradigm since no
explicit options were provided.
Attempting to parallelize loop at ‘atmux.c:20
Parallel sparse reduction pattern identified for variable 'y' with
associative, commutative operator '+'
Available parallelization strategies for variable 'y'
#1 OpenMP atomic access (* implemented)
#2 OpenMP explicit privatization
Loop parallelized with multithreading using OpenMP directive 'for'
Complete access range for variables: '‘row_ptr', 'col _ind', 'val', 'y’
Parallel region defined by OpenMP directive ‘'parallel’
Make sure there is no aliasing among arguments in 'compute': val, x,
y, col_ind, row_ptr, n
Successfully created atmux_omp.c

13. Note that most of the functionality you've used from Parallelware Analyzer’s pwcheck,
pwloops and pwdirectives tools is also available in Trainer. We will now switch to
Parallelware Trainer to generate several parallel versions, building and running them
through the graphical user interface in order to quickly compare their performance.

Launch Parallelware Trainer by invoking pwtrainer, open the ATMUX directory through
the File > Open Project menu entry and double click atmux.c to open it. Notice the header
file error in the Parallelware output console. In Trainer, you can add the compiler flags in
the Analysis tab of the project configuration, so select the Project > Configuration menu
entryand add -1 1ib.

14.

nﬂFAﬁMLELWﬁRE nnxﬁxtElemEﬁﬁ NER

|fs| PFroject Configuration

w
.~

-~

e

-l lib

:ﬁ Advanced

Project path: /home/jnovo/ATMUX -

Analysis Build

What command do you use to analize your program?

Enter required flags following GCC/Clang syntax
Example: -std=c++11 -DMYDEFINE=2 -lfusr/local/include

Run Clean

Cancel \

eval = CRSMatrix_aetData(in_sparseMat):

Now notice a yellow warning icon next to the 17 line number. This is a recommendation
just like those outputted by Analyzer’s pwcheck tool. Click it to get information on what it

is about and how to address it. In this case it is advising that you should move the
declarations of i and k to the loop header. Please, do so.

\.:appentra

atmux.c atmux_orig.c

#include <math.h>
#include <stdio.h

#include <time.h>

#ifdef _OPENMP
#include <omp.h>
#endif

double getClock()

b WN 2 ® O oo WMo

ink i, k;

A A

@ ~

M =

for (k = row_ptr[i]
21 ylcol_ind[k]] 5
22 }
23 }
24}
25
26 Compute sparse matri
27 void atmux(CRSMatrix =i
28
29 double *val = CRSM4
36 double *x = Vector]
31 double *y = Vector]
32 int *col_ind = CRSH
33 int *row_ptr = CRSH
34
35 int t, i, k;

>

#include <CRSMatrix.h>
#include <Matrix2D.h=
#include <Vector.h>

void compute(double %vg

(o] f'or-(i =08; i< n; i4

#include <stdlib.h>

PWR002 Declare scalar variables in the smallest possible scope

A scalar variable should be declared in the smallest scope possible. In computer programming, the
term scope of a variable usually refers to the part of the code where the variable can be used (e.g. a
function, a loop). During the execution of a program, a variable cannot be accessed from outside of its
scope. This effectively limits the visibility of the variable, which prevents its value from being read or
written in other parts of the code.

Explicitly declaring scalar variables in the smallest scope possible makes it easier to track its usages.
By minimizing the number of statements where the value could have been modified, it is easier to
diagnose why a variable is taking an erroneous value. Additionally, it reduces the likelihood of reusing
wvariables for multiple, incompatible purposes, making code testing significantly easier.

How to fix

Move the declaration of 'k' to the smallest possible scope. Scope starts at line 19.

Further information

[18:44:44] Analysis completed: @ opportunities found

[18:44:44] Analysis completed: 1 opportunity found

[18:47:34] Analysis completed: 1 opportunity and 1 recommendation (PWRP82) found

MrRamer WMaiicvze G (@ 3ppentra

15. Press Fé6 or select the Project > Run menu entry to run the sequential version of the code. If
you haven’t done so yet, you will need to fill the Build and Run tabs with make and make run,
respectively. Once you do so, Parallelware Trainer will execute the ATMUX program and
you will get the results in the Execution output console.

Frroject Gonriguration |
Project path: /home/jnovo/ATMUX | Project path: /home/jnovo/ATMUX
Analysis Build Run Clean Analysis Build Run Clean
What command do you use to build your program? | What command do you use to run your program?
make] make run
Where do you build your program? { Where do you run your program?

/home/jnovo/ATMUX | /home/jnovo/ATMUX
Advanced Cancel Advanced Cancel

[15:28:47] Starting 'make run'...
cc atmux.c lib/Matrix2D.c lib/Vector.c lib/CRSMatrix.c =-std=c99 -02 -Ilib -fopenmp =-o atmux

Jfatmux 17888

- Input parameters
size = 17868

- Executing test...
time (s)= 1.286367

size = 176888
sparsity = B.66

chksum = 244118871193
iters = 168

[15:28:58] Execution completed successfully (11.197 seconds)

LU N .) Build output Execution output Parallelware output

16. Green circles constitute parallelization opportunities, just like those reported by
Analyzer’s pwloops tool. Clicking it will display the parallelization options dialog in which
you can select the target standard, hardware and paradigm that you want to parallelize for.
The first time, you can just leave the default options and click Parallelize. By default the
parallelization strategy “Parallel Loop w/ Atomic” (or simply “atomic”) is generated.

Parallelization options

Standard
® OpenMP
) OpenACC

Device
= CPU

) GPU

Paradigm

(®) Multithreading

) Offloading with teams

() Tasking with taskloop

Parallel reduction variables

Atomic protection XY, e
Built-in reduction WA

Explicit privatization vy, ...

Ranges for array variables

Array ranges x[0:100], y[N:M], ...

Data Scoping Cancel GEIEUEIFS

NERSC

’,appentra

arallel

The code is updated with the proper pragmas implementing the parallelization. Notice
that a new version called Original is automatically created in the version manager on the
right. You can create different versions of the file for the different parallel
implementations and restore them to perform experimentations.

16
17
18
19
20
21
22
23
24
25
26
27
28

void compute(double #*val, double *x, double #y,

Ily = AM x

#pragma omp parallel default(none) shared(col_ind, n, row_ptr,

{
#pragma omp for schedule(auto)
for (int i = 8; 1 < n; i++) {

int *col_ind, int *row_ptr, int n) {

for (int k = row_ptr[i]; k < row_ptr[i + 1]; k++) {

#pragma omp atomic update

y[col_ind[k]] = ylcol_ind[k]] + x[i] * vall[k];

}
}
} // end parallel

val,

X, y)

17. Again, press F6 or select the Project > Run menu entry to run the parallel version of the

code.

nnFAﬁALLfLW€RE nﬂmxwzﬂﬁﬁ NEeR \.appen‘tra

[15:32:82] Starting "make run'...
cc atmux.c lib/Matrix2D.c lib/Vector.c lib/CRSMatrix.c -std=c99 -02 -Ilib -fopenmp -0 atmux

Jfatmux 17688

- Input parameters
size = 176868

- Executing test...
time (s)= 1.992438

size = 17868
sparsity= 8.66

chksum = 244118871193
iters = 16

[15:32:12] Execution completed successfully (9.939 seconds)

< B O Build output Execution output Parallelware output

Note that the parallel version is correct but it runs slower than the sequential version. So
we need to find an alternative parallelization strategy that introduces less parallelization
overhead (e.g., create/destroy threads, mutual exclusion mechanisms like atomic
operations, synchronization barriers).

18. Save this parallel implementation version by selecting the File > Create Version menu entry
and giving it a name such as omp_atomic.

19. Restore the Original version of atmux.c and parallelize it again, now using the
parallelization strategy “Parallel Loop w/ Explicit Privatization” (or simply “explicit
privatization”). Enter y and y[O:n] in the Explicit privatization and Array ranges input boxes of
the parallelization options dialog, respectively.

WTRATNER OMNALYzE

Parallelization options

Standard
& OpenMP
) OpenACC

Device
@ CPU
) GPU

Paradigm
‘®) Multithreading
) Offloading with teams

) Tasking with taskloop

Parallel reduction variables

Atomic protection PR A
Built-in reduction 3N s

Explicit privatization vy

Ranges for array variables

Array ranges | y[0:n]]

Data Scoping Cancel RElEUEFRE

‘e

appentra

make code parallel

Clicking again Parallelize will generate the following parallel code, for which you can create

anew version (e.g. named omp_privatization):

10

HHFAﬁAMNéRE "”mﬁ{fzﬁ NEF \.appentra

17 void compute(double *val, double #*x, double #*y, int *col_ind, int *row_ptr, int n) {
18 1y AAT x
19 #pragma omp parallel default(none) shared(coel_ind, n, row_ptr, val, x, vy)

28 {

nble

d int y_length = 8 + n;

ouble *y_private = (double #) malloc(sizeof{double) * y_length);
24 for (int i = 8; i < y_length; ++i) {

25 y_private[i] = 8;
2

1d preamble
agma omp for schedule(auto)

29 for (int 1 = 8; 1 < n; i++) {

7

30 for (int k = row_ptr[i]; k < row_ptr[i + 1]; k++) {

31 y_private[col_ind[k]] = y_private[col_ind[k]] + x[i] * wvallk];
32 }

33 }

34 // postamble

35 #pragma omp critical

36 for(int 4 = B; i < y_length; ++i) {

37 y[i] += y_private[i];

38 3

39 free(y_private);

Run again the program by pressing F6 and compare the performance with the previous
version.

[15:33:26] Starting 'make run'...
cc atmux.c lib/Matrix2D.c lib/Vector.c lib/CRSMatrix.c -std=c99 -02 -Ilib -fopenmp -0 atmux

Jfatmux 17888

- Input parameters
s5ize = 17888

- Executing test...
time (s)= 8.629218

size = 1768688
sparsity= @.66

chksum = 244118871193
iters =18

[15:33:34] Execution completed successfully (8.941 seconds)

< > B O Build output Execution output Parallelware output

You will notice that the explicit privatization version is faster than the atomic one (even
when both are using multithreading on the CPU). Furthermore, it runs twice faster than
the sequential version of ATMUX.

20. Now we will try offloading the computation to the GPU. We need to prepare the code as
we will need to specify the data ranges to copy between the CPU memory and the GPU
memory. Restore the Original version, add a new long long nnz parameter to the the
compute function and pass the size of the in_sparseMat matrix. Your code should look like
the following (see lines 16, 33 and 40):

07RATNER — OAikiviey (g cppentra

#include <math.h=

1

2 #include <stdio.h=

3 #include <stdlib.h>

4 #include <time.h>

5

6 #include <CRSMatrix.h=

7 #include <Matrix2D.h>

8 #include <Vector.h>

9
18 #ifdef _OPENMP

11 #include <omp.h=
12 #endif
13
14 double getClock();
15
16 void compute(double *val, double *x, double *y, int *col_ind, int *row_ptr, int n, long long nnz) {
17 /iy = AT x
180 for (int i =8@; 1 < n; i++) {
19 for (int k = row_ptr[i]; k < row_ptr[i + 1]; k++) {
28 ylcol_ind[k]] = y[col_ind[k]] + x[i] * val[k];
21 }
22 }
23 3
24
25 // Compute sparse matrix-vector multiplication
26 void atmux(CRSMatrix *in_sparseMat, Vector =*in_vec, Vector xout_vec, int n) {
27
28 double *val = CRSMatrix_getData(in_sparseMat);
29 double *x = Vector_getData(in_vec);
38 double *y = Vector_getData(out_vec);
31 int *col_ind = CRSMatrix_colRef(in_sparseMat);
32 int *row_ptr = CRSMatrix_rowRef(in_sparseMat);
33 long long nnz = CRSMatrix_getSize(in_sparseMat);
34
35 it ', 1, ks
36
37 0 for (t = 8; t < n; t++)
38 y[t] = @;
39
48 compute(val, x, y, col_ind, row_ptr, n, nnz);
41 }

21. Create a new version of the code called param_nnz, which will be the starting point to code
GPU versions in the following steps.

22. You also need to add offloading flags in the Makefile. Double click it to open, add a new line
defining CC = gcc and append -foffload=nvptx-none to the CFLAGS variable.

SOURCES = atmux.c lib/Matrix2D.c lib/Vector.c 1lib/CRSMatrix.c
TARGET = atmux

CC = gcc
CFLAGS = -std=c99 -02 -Ilib -foffload=nvptx-none

23. Parallelize for OpenMP, GPU and Offloading. You will need to fill the missing information
in the map clauses, specifically you need to ensure that the following two map clauses are
in place:

map(to: col_ind[@:nnz], n, row_ptr[@:n+l], val[@:nnz], x[0:n])

map (tofrom:y[0:n])

12

00TRATNER TMbivieh SR (@ 3ppentra

void compute(double #val, double *x, double *y, int *col_ind, int *row_ptr, int n, long long nnz) {
Ity = AMT x
#pragma omp target teams distribute parallel for shared(col_ind, n, row_ptr, wval, x) schedule(auto) \
map(to: col_ind[@:nnz], n, row_ptr[@:n+1], val[@:nnz], x[@:n]) map(tofrom:y[@:n])
for (int 1 = 8; 1 =< n; i++) {
for (int k = row_ptr[i]; k < row_ptr[i + 1]; k++) {
#pragma omp atomic update
y[ecol_ind[k]] = y[col_ind[k]] + x[i] * wval[k];

24. Build and run the OpenMP offloading version. Save it as omp_gpu if you like.

25. Open the project configuration and change the build command to make omp and the run
command to srun./atmux 17000.

[88:32:35] Starting 'srun ./fatmux 17888°'...
- Input parameters

size = 17888

- Executing test...

time (s)= 3.46B8869

size = 17888
sparsity= 6.66

chksum = 244118871193
iters =18

[8B:32:47] Execution completed successfully (12.877 seconds)

< p»p B O Build output Execution output Parallelware output

26. Restore version param_nnz and now parallelize for OpenACC, GPU and Offloading. Again,
you need to fill the missing information in the copy clauses:

copyin(col_ind[@:nnz], n, row_ptr[@:n+l], val[@:nnz], x[@:n])

copy(y[@:n])

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

void compute(double *val, double *x, double *y, int *col_ind, int *row_ptr, int n, long long nnz) {
/1y = A*T x
#pragma acc data copyin(col_ind[8:nnz], n, row_ptr[@:n+1], val[@:nnz], x[8:n]) copy(y[@:n])
{
#pragma acc parallel
{
#pragma acc loop
for (int 1 = 8; 1 < n; i++) {
for (int k = row_ptr[i]; k < row_ptr[i + 1]; k++) {
#pragma acc atomic update
ylcol_ind[k]] = y[col_ind[k]] + x[i] * val[k];

27. Open the project configuration, change the build command to make acc and ensure that the
run command is srun ./atmux 17000.

13

HHPAﬁALLELW€RE n”xﬁxtEYtszﬁﬁ NER s')apper'rtra

[88:31:19] Starting 'srun ./atmux 17868 ...
- Input parameters

size = 178688

- Executing test...

time (s)= 3.292694

size = 17888
sparsity= 8.66

chksum = 244118871193
iters =18

[88:31:31] Execution completed successfully (12.845 seconds)
< pr B O Build output Execution output Parallelware output

28. Build and run the OpenMP offloading version. Save it as acc_gpu if you like.

14

