
Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training1

Ruud van der Pas
Senior Principal Software Engineer

Oracle Linux and Virtualization Engineering
Oracle, USA

OpenMP Training Series
August 5, 2024

NERSC, Berkeley, CA, USA

"What Could Possibly Go
Wrong Using OpenMP?"

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Previously, I worked at Philips, the University of Utrecht, Convex
Computer, SGI, and Sun Microsystems

My background is in mathematics and physics

$ whoishe

2

Currently I work in the Oracle Linux Engineering organization

I have been involved with OpenMP since the introduction

I am passionate about performance and OpenMP in particular

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Outline

3

Part I - What Could Possibly Go Wrong Using OpenMP?	

Q and (some) A

Part II - The Joy Of Computer Memory

Prologue

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training4

Prologue

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

OpenMP and Performance

5

And your code will scale

If you do things in the right way

Easy -ne Stupid

You can get good performance with OpenMP

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Ease of Use ?

6

The ease of use of OpenMP is a mixed blessing
(but I still prefer it over the alternative)

Ideas are easy and quick to implement

But some constructs are more expensive than others

If you write dumb code, you probably get dumb performance

Just don’t blame OpenMP, please*

*) It is fine to blame the weather, or politicians, or both though

will

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

My Preferred Tuning Strategy

7

In terms of complexity, use the most efficient algorithm

Select a profiling tool

Find the highest level of parallelism
(this should however provide enough work to use many threads)

Use OpenMP in an efficient way

Be prepared to have to do some performance experiments

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training8

Things You Need To Know

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

About Caches

9

Caches are fast buffers, used for data and instructions

For cost and performance reasons, a modern processor has a
hierarchy of caches

Some caches are private to a core, others are shared

Let’s look at a typical example

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

M
em

or
yL2

D

I
Core

A Typical Memory Hierarchy

10

Core
D

L2
I

L3
(LLC)

Capacity Increases

Speed Decreases

The unit of transfer
is a “cache line”

A cache line contains
multiple elements

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Multicore and Hardware Threads

11

Core

Memory

Core Core

Multicore Node

“SMP on a Chip” Core

Hardware Threads

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

About Cores and Hardware Threads

12

A core may, or may not, support hardware threads

This is part of the design

These hardware threads may accelerate the execution of a
single application, or improve the throughput of a workload

The idea is that the pipeline is used by another thread in case
the current thread is idle

Each hardware thread has a unique ID in the system

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

How Hardware Threads Work

13

Time

No hardware
threads

Two hardware
threads

saved time

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Hardware Thread IDs

14

Co
re

H
ar

dw
ar

e
Th

re
ad

s

Co
re

H
ar

dw
ar

e
Th

re
ad

s

0

2
4

6

1

3
5

7

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training15

Part I - What Could Possibly Go Wrong?

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training16

Nothing
of course

or maybe …

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training17

Where Could Things Go Wrong Then?

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

• An incorrect answer
• Poor parallel performance
• A wrong answer and terrible performance

There are three things that can go wrong

What Do You Actually Mean with “Wrong”?

18

In this talk, we cover the first two categories*

*) The third category is too much for me to handle ;-)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The Big OpenMP Picture

19

OpenMP run
time library

The Code

Use

OpenMP

The Code + OpenMP

0011101111
1101111011
1101010101
1110101101
1111001101
1101010101
1100101011

Compiler with
OpenMP support

OpenMP Executable

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The scoping (private, shared, etc.) rules are violated

The code has been incorrectly parallelized

Wrong Answers - The Top Three

20

A data race has been introduced

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Incorrect Parallelization - An Example

21

prev_val = a[0];
for (int i=1; i<n; i++)
 {
 a[i] = prev_val + b[i];
 prev_val = a[i];
 }

This loop has a data dependence

for (int i=1; i<n; i++)
 {
 a[i] = a[i-1] + b[i];
 }

Still a data dependence …

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Incorrect Parallelization - An Example

22

prev_val = a[0];
#pragma omp parallel for
for (int i=1; i<n; i++)
 {
 a[i] = prev_val + b[i];
 prev_val = a[i];
 }

Force the loop to execute in parallel $ gcc -fopenmp wrong.c
$ export OMP_NUM_THREADS=4
$./a.out
Loop length n = 10
Number of threads = 4
Number of errors = 6
a[1] = 3 ref[1] = 3
a[2] = 6 ref[2] = 6
a[3] = 10 ref[3] = 10
a[4] = 34 ref[4] = 15 *
a[5] = 40 ref[5] = 21 *
a[6] = 36 ref[6] = 28 *
a[7] = 44 ref[7] = 36 *
a[8] = 19 ref[8] = 45 *
a[9] = 29 ref[9] = 55 *

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Incorrect Parallelization - Wrong Results (of course)

23

Force the loop to execute in parallel $ gcc -fopenmp wrong.c
$ export OMP_NUM_THREADS=4
$./a.out
Loop length n = 10
Number of threads = 4
Number of errors = 4
a[1] = 3 ref[1] = 3
a[2] = 6 ref[2] = 6
a[3] = 10 ref[3] = 10
a[4] = 15 ref[4] = 15
a[5] = 21 ref[5] = 21
a[6] = 47 ref[6] = 28 *
a[7] = 55 ref[7] = 36 *
a[8] = 64 ref[8] = 45 *
a[9] = 74 ref[9] = 55 *

#pragma omp parallel for
for (int i=1; i<n; i++)
 {
 a[i] = a[i-1] + b[i];
 }

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Yes, “maybe”. In the worse case, the results are sometimes ok

Incorrect Parallelization - Morale

24

There is a simple trick, but it works only one way

Parallelize code that is not parallel => maybe wrong results

If it is a loop, run the sequential version backwards

If the results are wrong, you know it is not parallel as written

If the results are correct, you still don’t know …

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

If this is the case, try to find a parallel version

Incorrect Parallelization - Some Tips

25

But, be aware it is still efficient on a single thread

Use a profiling tool to see if this code part actually matters

Isolate the sequential part and parallelize the remainder

In doing so, try to avoid excessive extra cache/memory traffic

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Variable prev_val was implicitly scoped as “shared”

The previous example also included a wrong scoping case

Wrong Answers - Violation of the Scoping Rules

26

This is one of the common pitfalls, but not the only one

The most common mistake is about private variables

Recall that they are undefined outside of the parallel region
prev_val = a[0];
#pragma omp parallel for
for (int i=1; i<n; i++)
 {
 a[i] = prev_val + b[i];
 prev_val = a[i];
 }

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Incorrect Scoping - Another Example

27

int my_var = 10;
#pragma omp parallel for private(my_var)
for (int i=0; i<n; i++)
 {
 a[i] = my_var + b[i];
 }

Variable my_var is undefined
Even if this might work today, there is no guarantee for tomorrow

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Incorrect Scoping - The Solution

28

int my_var = 10;
#pragma omp parallel for firstprivate(my_var)
for (int i=0; i<n; i++)
 {
 a[i] = my_var + b[i];
 }

Variable my_var is implied to be private
Each thread has a local copy with an initial value of 10

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

They are automatically privatized

Declare variables local to a code block where possible

Incorrect Scoping - Morale

29

Specify the scope of the remaining variables yourself

This is not as hard as it may seem

Extremely rewarding when it comes to avoiding bugs

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

• Multiple threads access the same memory location concurrently
• At least one of the accesses modifies the contents of this location
• There is no control to guarantee exclusive access to this location

A data race occurs if all the following conditions are met

Wrong Answers - Data Races

30

Yes, the results may vary, even across identical runs

A data race may lead to silent data corruption

The wrong results are also non-deterministic

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Incorrect Code - A Data Race Example

31

int my_shared_var = 0;
#pragma omp parallel for shared(my_shared_var)
for (int i=0; i<n; i++)
 {
 my_shared_var += a[i];
 }

The above code meets all 3 conditions
At any moment, multiple threads may read and write my_shared_var

WRONG!

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Incorrect Code - Fixing the Data Race Example

32

int my_shared_var = 0;
#pragma omp parallel for reduction(+:my_shared_var)
for (int i=0; i<n; i++)
 {
 my_shared_var += a[i];
 }

As simple as it looks, the reduction clause generates non-trivial
code that avoids the data race

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Luckily, OpenMP provides high level constructs to avoid them

Data races are very nasty

Data Races - Morale

33

In less common cases, use alternatives that avoid data races:

These help to make it easier to avoid data races

• Atomic operations
• Critical regions
• Barriers
• Locks

Please us these!

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Consolidate as much work as possible in a single parallel region

Too much parallel overhead

Poor Performance - The Top Three

34

Load balancing

Consider the schedule clause and tasking

Experiment with the affinity related environment variables

Non-Uniform Memory Acces (NUMA)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Unfortunately, these, or others could happen to you too

We covered some major mistakes made

Summary Part I

35

What helps, is to regularly check for correctness

The performance issues mentioned are the tip of the iceberg

Make sure to use a profiling tool to guide you with the tuning

But, it is a big tip :-)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training36

Part II - The Joy Of Computer Memory

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Motivation Of This Work

37

Question: “Why Do You Rob Banks ?”

Question: “Why Do You Focus On Memory ?”

Answer: “Because That’s Where The Money Is”
Willie Sutton – Bank Robber, 1952

Answer: “Because That’s Where The Bottleneck Is”

Ruud van der Pas – Performance Geek, 2024

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

When Do Things Get Harder?

38

There are however two cases to watch out for

Memory Access “Just Happens”

NUMA and False Sharing

They have nothing to do with OpenMP though and are a
characteristic of a shared memory architecture

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

What is False Sharing?

39

Happens when multiple threads modify the same cache line at
the same time

A corner case, but it may affect you

This results in the cache line to move around
(plus the additional cost of the cache coherence)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

An Example of False Sharing

40

#pragma omp parallel shared(a)
{
 int TID = omp_get_thread_num();

 a[TID] = 0.0;

} // End of parallel region

a[TID] = 0.0; // False Sharing

0.0 TID = 0

0.00.0 TID = 2

TID = 10.0 0.0 0.0

0.0 0.0 TID = 30.0 0.0

Vector a

0 1 2 3

A data race induces false sharing
(so the program will run much slower)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Now Things Are About To Get “Interesting”

41

Non-Uniform Memory Access (NUMA) is much more general and
more likely to affect the performance of your code

False Sharing is important, but a corner case

The remainder of this talk is about NUMA
(you still have 10 seconds to leave, but please don’t scream too loudly)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training42

NUMA in Contemporary Systems

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Modern Times

43

This is no longer true and therefore a concern to all

The tricky thing is that “things just work”

But do you know how efficiently your code performs?

Non-Uniform Memory Access (NUMA) used to be the realm of
large servers only

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

NUMA - The System Most of Us Use Today

44

A Generic, but very Common and Contemporary NUMA System
N

od
e

M
em

or
y

LL
CCores

N
ode

M
em

ory

LL
C Cores

N
od

e

M
em

or
y

LL
CCores

N
ode

M
em

ory

LL
C Cores

Cache Coherent
Interconnect

Single System Image

Scalable Bandwidth

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The Developer’s View

45

M
y

 D
at

a
M

y
D

at
a M

y D
ata

M
y D

ata

MAGIC

My
Threads

My
Threads

My
Threads

My
Threads

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The NUMA View

46

Shared data is accessible to all threads

You don’t know where the data is and it doesn’t matter

Unless you care about performance …

Memory is physically distributed, but logically shared

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Local Versus Remote Access Times

47

My
Threads

My
Threads

My
Threads

My Thread
Executes Here

Local Access
(Fast) Remote Access

(Slow)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Tuning for a NUMA System

48

Tuning for NUMA is about keeping threads and their data close

Not the other way round, because that is more expensive

The affinity constructs in OpenMP control where threads run

This is a powerful feature, but it is up to you to get it right
(in this context,”right” is not about correctness, but about the performance)

In OpenMP, a thread may be moved to the data

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training49

About NUMA and Data Placement

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The First Touch Data Placement Policy

50

The First Touch Placement policy allocates the data page in the
memory closest to the thread accessing this page for the first

time

This policy is the default on Linux and other OSes

So where does data get allocated then?

It is the right thing to do for a sequential application

But this may not work so well in a parallel application

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

First Touch and Parallel Computing

51

Then, all the data ends up in the memory of a single node

This increases memory access times for certain threads
(and may also cause congestion on the network)

First Touch works fine, but what if a single thread initializes
most, or all of the data?

Luckily, the solution is (often) surprisingly simple

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

A Sequential Initialization

52

for (int64_t i=0; i<n; i++)
 a[i] = 0;

Note: The allocation is on a virtual memory page basis

= Data

= Thread

One thread executes this loop

All of “a” is in a single node

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Leverage the First Touch Placement Policy

53

#pragma omp parallel for schedule(static)
for (int64_t i=0; i<n; i++)
 a[i] = 0;

= Data

= Thread

Four threads execute this loop

The data is spread out

Note: The allocation is on a virtual memory page basis

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The Tricky Part

54

Q: How about I/O ?

A: Add a redundant parallel initialization before reading the data

Q: What if the data access pattern is irregular?

A: Randomize the data placement (e.g. use the numactl tool)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

About Memory Allocations

55

Do not use calloc for global memory allocation

Okay to use within a single thread

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training56

OpenMP Support for NUMA Systems

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

OpenMP Places

57

In a NUMA system, it matters where your threads and data are

• An example of a symbolic name: cores
• An example of a set: 1, 5, 7, 11, 13

In OpenMP, places are used to define where threads may run

A place is defined by a symbolic name, or a set of numbers:

Note that a mix of these two concepts is not allowed

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

OpenMP Support For Thread Affinity

58

• The data is where it happens to be
• Move a thread to the data it needs most

There are two environment variables to control this

Philosophy:

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The Affinity Related OpenMP Environment Variables

59

OMP_PROC_BIND

OMP_PLACES

Defines where threads may run

Defines how threads map onto the OpenMP places

Note: Highly recommended to also set OMP_DISPLAY_ENV=verbose

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Placement Targets Supported by OMP_PLACES

60

Keyword Place definition

threads A hardware thread

cores A core

ll_caches A set of cores that share the last level cache

numa_domains A set of cores that share a memory and have
the same distance to that memory

sockets A single socket

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Hardware Thread ID Support to Define Places

61

The abstract names are preferred

The OMP_PLACES variable also supports hardware thread IDs

Places can be defined using any sequence of valid numbers

A compact set notation is supported as well

Notation: {start:total:increment}

For example: {0:4:2} expands to {0,2,4,6}

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Examples How to Use OMP_PLACES

62

Use Hardware Thread IDs 0, 8, 16, and 24:

Threads are scheduled on the NUMA domains in the system:

$ export OMP_PLACES=numa_domains

$ export OMP_PLACES=“{0},{8},{16},{24}”

$ export OMP_PLACES={0}:4:8

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Map Threads onto Places

63

Use variable OMP_PROC_BIND to map threads onto places

The settings define the mapping of threads onto places

The following settings are supported:
true, false, primary, close, or spread

The definitions of close and spread are in terms of the place list

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

An Example Using Places and Binding

64

$ export OMP_PLACES=cores

$ export OMP_PROC_BIND=spread

And they should be placed on cores as far away from each other
as possible:

Threads are scheduled on the cores in the system:

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Remember This Example?

65

#pragma omp parallel for schedule(static)
for (int64_t i=0; i<n; i++)
 a[i] = 0;

= Data

= Thread

Four threads execute this loop

The data is spread out

Data placement depends on
where threads execute

Use Affinity Controls

$ export OMP_PLACES=numa_domains
$ export OMP_PROC_BIND=spread

Wishful Thinking

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

NUMA Diagnostics

66

It is very easy to make a mistake with the NUMA setup

Two very simple, but yet powerful features to assist:

Variable OMP_DISPLAY_ENV echoes the initial settings

Variable OMP_DISPLAY_AFFINITY prints information at run time

Highly recommended to use these diagnostic features!

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training67

A Performance Tuning Example

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Matrix Times Vector Multiplication: a = B*c

68

#pragma omp parallel for default(none) \
 shared(m,n,a,B,c) schedule(static)
for (int i=0; i<m; i++)
{
 double sum = 0.0;
 for (int j=0; j<n; j++)
 sum += B[i][j]*c[j];
 a[i] = sum;
}

= *

j

i

a B c

An embarrasingly parallel algorithm!
(on paper)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The Performance Using 64 Threads*

69

*) The machine characteristics will be disclosed shortly

Performance of the matrix-vector algorithm (4096x4096)

This is a highly parallel
algorithm, but adding threads

degrades the performance!

Pe
rf

or
m

an
ce

 in
 G

fl
op

/s

0

1

2

3

4

5

6

Number of OpenMP Threads

0 8 16 24 32 40 48 56 64

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Automatic NUMA Balancing in Linux

70

“Automatic NUMA balancing moves tasks (which can be threads or processes) closer to
the memory they are accessing. It also moves application data to memory closer to the
tasks that reference it. This is all done automatically by the kernel when automatic NUMA
balancing is active.”

“Virtualization Tuning and Optimization Guide”, Section 9.2, Red Hat documentation

echo 1 > /proc/sys/kernel/numa_balancing enable

echo 0 > /proc/sys/kernel/numa_balancing disable

This is an interesting feature available in Linux

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The Performance Using 64 Threads*

71

Performance of the matrix-vector algorithm (4096x4096)

NUMA balancing gives a 1.6x
improvement, but the

performance is still
rather poor

Pe
rf

or
m

an
ce

 in
 G

fl
op

/s

0

1

2

3

5

6

7

8

9

Number of OpenMP Threads

0 8 16 24 32 40 48 56 64

Without NUMA Balancing With NUMA Balancing

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training72

Let’s Check The System
We Are Using!

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The NUMA Information for the System

73

$ lscpu
 ……
NUMA node0 CPU(s): 0-7 , 64-71
NUMA node1 CPU(s): 8-15 , 72-79
NUMA node2 CPU(s): 16-23, 80-87
NUMA node3 CPU(s): 24-31, 88-95
NUMA node4 CPU(s): 32-39, 96-103
NUMA node5 CPU(s): 40-47,104-111
NUMA node6 CPU(s): 48-55,112-119
NUMA node7 CPU(s): 56-63,120-127
 ……
$

node distances:
node 0 1 2 3 4 5 6 7
 0: 10 16 16 16 32 32 32 32
 1: 16 10 16 16 32 32 32 32
 2: 16 16 10 16 32 32 32 32
 3: 16 16 16 10 32 32 32 32
 4: 32 32 32 32 10 16 16 16
 5: 32 32 32 32 16 10 16 16
 6: 32 32 32 32 16 16 10 16
 7: 32 32 32 32 16 16 16 10

8 NUMA Nodes

8 cores/node

2 columns => 2 hardware threads/core

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The NUMA Structure of the System*

74

Each NUMA node has 8 cores with 2 hardware threads each

Consists of 8 NUMA nodes according to “lscpu”

In total the system has 64 cores and 128 hardware threads

There are two levels of NUMA (“16” and “32”)

*) This is an AMD EPYC “Naples” 2 socket server (yes, I know, it is relatively old :-))

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The Abstract System Topology (numactl -H)

75

Center
Node

Remote
Node

Remote
Node

Remote
Node

Remote
Node

Remote
Node

Remote
Node

Remote
Node

Even longer access time (“32”)

Longer access time (“16”)

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Example - NUMA Node 0 (lscpu output)

76

0 64 1 65 2 66 3 67 4 68 5 69 6 70 7 71

Memory

8 cores
16 hardware threads

All cores and hardware threads share the memory in the node

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

#pragma omp parallel for default(none) \
 shared(m,n,a,B,c) schedule(static)
for (int i=0; i<m; i++)
{
 double sum = 0.0;
 for (int j=0; j<n; j++)
 sum += B[i][j]*c[j];
 a[i] = sum;
}

Recall the Code Used Here (a = B*c)

77

= *

j

i

a B c

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Is There Anything Wrong Here?

78

Nothing wrong with this code

But this code is not NUMA aware

The data initialization is sequential

Therefore, all data ends up in the memory of a single node

Let’s look at a more NUMA friendly data initialization

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

The Original Data Initialization

79

 for (int64_t j=0; j<n; j++)
 c[j] = 1.0;

 for (int64_t i=0; i<m; i++) {
 a[i] = -1957;
 for (int64_t j=0; j<n; j++)
 B[i][j] = i;
 }

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

A NUMA Friendly Data Initialization

80

#pragma omp parallel
{
 #pragma omp for schedule(static)
 for (int64_t j=0; j<n; j++)
 c[j] = 1.0;
 #pragma omp for schedule(static)
 for (int64_t i=0; i<m; i++) {
 a[i] = -1957;
 for (int64_t j=0; j<n; j++)
 B[i][j] = i;
 }
} // End of parallel region

= *

j

i

a B c

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Control the Mapping of Threads

81

As an example, use the first hardware thread of the first two
cores of all the nodes

The Thread Placement Goal
Distribute the OpenMP threads evenly across the cores and

nodes

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Example - The Target Hardware Thread Numbers

82

0 1

N
od

e
0

16 17

N
od

e
2

8 9

N
ode 1

24 25

N
ode 3

48 49

N
od

e
6

32 33

N
od

e
4

40 41

N
ode 5

56 57

N
ode 7

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

An Example How to Use OpenMP Affinity

83

$ export OMP_PROC_BIND=close

$ export OMP_NUM_THREADS=16

$./a.out

NUMA node0 CPU(s): 0-7 , 64-71
NUMA node1 CPU(s): 8-15 , 72-79
NUMA node2 CPU(s): 16-23 , 80-87
NUMA node3 CPU(s): 24-31 , 88-95
NUMA node4 CPU(s): 32-39 , 96-103
NUMA node5 CPU(s): 40-47 , 104-111
NUMA node6 CPU(s): 48-55 , 112-119
NUMA node7 CPU(s): 56-63 , 120-127

Expands to the first hardware thread on the first 2 cores on each node:
{0}, {8}, {16}, {24}, {32}, {40}, {48}, {56}, {1},{9},{17},{25},{33},{41},{49},{57}

$ export OMP_PLACES={0}:8:8,{1}:8:8

Note: Setting OMP_DISPLAY_ENV=verbose is your friend here!

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Pe
rf

or
m

an
ce

 in
 G

fl
op

/s

0

20

40

60

80

100

120

140

160

180

Number of OpenMP Threads

0 8 16 24 32 40 48 56 64

First Touch not leveraged First Touch leveraged

The Performance for a 4096x4096 matrix

84

Threads No Leverage
First Touch

Leverage
First Touch

Benefit of First
Touch

1 5,1 5,1 1,0
56 8,0 113,3 14,2
64 8,0 175,4 21,9

Speed up 1,6 34,4

Performance in Gflop/s

Recall that the only difference is
in the initialization of the data

Much better scaling
(34x using 64 threads)

First Touch tuning improves the
performance by a factor of 22!

22x
faster

Oracle Linux with the gcc compiler
2 socket system (2 AMD EPYC 7551 with 64 cores)

NUMA balancing on; negative scaling for version without FT and balancing off

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Part II - Takeaways

85

Data and thread placement matter (a lot)

Important to leverage First Touch Data Placement

OpenMP has elegant, yet powerful, support for NUMA

The NUMA support in OpenMP continues to evolve and expand

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training

Wrapping Things Up

86

Follow the tuning guidelines given in this talk

Always use a profiling tool to guide the tuning efforts

Performance tuning is a frustrating and iterative process

In may cases, a performance “mystery” is explained by NUMA
effects, False Sharing, or both

Think Ahead

Copyright (©) 2024 by Ruud van der Pas“What Could Possibly Go Wrong Using OpenMP?” - NERSC OpenMP Training87

Thank You And … Stay Tuned!

Ruud van der Pas

 OpenMP
Does Not Scale
Bad

