OpenMP

Programming OpenMP

Christian Terboven
Michael Klemm

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Agenda (in total 7 Sessions)

= Session 1: OpenMP Introduction
= Session 2: Tasking

= Session 3: Optimization for NUMA and SIMD
= Session 4: What Could Possibly Go Wrong Using OpenMP
= Session 5: Introduction to Offloading with OpenMP

= Session 6: Advanced Offloading Topics
- Unstructured Data Movement
- Asynchronous Offloading
—>Integration of GPU-Kernels (i.e., HIP)
- Detachable (GPU) tasks
- Real-World Application Case Study: NWChem

—-Homework assignments ©

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

Review

Christian Terboven RWTH
Michael Klemm OpenMI?

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Questions?

n OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Jacobi

OpenMP Tutorial
Members of the OpenMP Language Committee

Example solution: Jacobi basic

OpenMP

while (err > tol && iter < iter max) {
err = 0.0;

#pragma omp target teams distribute parallel for reduction (max:err)\
schedule (nonmonotonic:static,1l) map(to:A[0:n*m]) map(from:Anew[0:n*m], err)
for(j=1; j < n-1; j++) {
for(i=1; i < m-1; i++) {
Anew|[j *m+ i] = 0.25 * (A[j *m+ (i+1l)] + A[] *m+ (i-1)]
+ Al (j-1) *m+ i] + A[(j+1) *m+ i]);
err = fmax(err,fabs (Anew[j*m+i]-A[j*m+i])) ;
}
}
for(j =1; j < n-1; j++) {
for(i=1; i < m-1; i++) {
A[j *m+ i] = Anew[]j *m+ i];
}
}

iter++;
} // end while

- OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Example solution: Jacobi data

#pragma omp target data map(to:A[0:n*m]) map(alloc:Anew[0:n*m])
while (err > tol && iter < iter max) ({
err = 0.0;

#pragma omp target teams distribute parallel for reduction(max:err) \
schedule (nonmonotonic:static,1)
for(j =1; j < n-1; j++) {
for(i=1; 1i < m-1; i++) {
Anew[j *m+ i] = 0.25 * (A[j *m+ (i+1l)] + A[J *m+ (i-1)]
+ Al[(j-1) *m+ i] + A[(j+1) *m+ i]);
err = fmax (err,fabs (Anew[j*m+i]-A[j*m+i])) ;

}

#pragma omp target teams distribute parallel for schedule (nonmonotonic:static,1)
for(j =1; j < n-1; j++) {
for(i=1; 1i < m-1; i++) {
A[j *m+ i] = Anew[]j *m+ 1i];
}
}

iter++;
} // end while

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Old setup (reference numbers from 2021)

- clang 12.0.0 with gcc 4.8.5 from CentOS 7.9.2009

m OpenMP Tutorial
Members of the OpenMP Language Committee

Jacobion GPU / 1 OpenMP

- Task 0: You might want to acquire reference measurements on the host (wo/ GPU)...

- Skipped...

- Task 1: Get it to the GPU: Parallelize only the one most compute-intensive loop

- OpenMP Tutorial
Members of the OpenMP Language Committee

Jacobi on GPU / 2 OpenMP

- Task 2: Improve the data management and the amount of parallelism on the GPU

- Task 3: Optimize that scheduling of iterations for the GPU

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP
Programming OpenMP

GPU: unstructured data movement

Christian Terboven RWTH
Michael Klemm Opean?

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Map variables across multiple target regions

= Optimize sharing data between host and device.

» The target data, target enter data, and target exit
data constructs map variables but do not offload code.

= Corresponding variables remain in the device data environment for the
extent of the target data region.

= Useful to map variables across multiple target regions.

= The target update synchronizes an original variable with its
corresponding variable.

OpenMP Tutorial
Members of the OpenMP Language Committee

target update Construct Syntax OpenMP

= |ssue data transfers to or from existing data device environment

= Syntax (C/C++)
#pragma omp target update [clause[[,] clause],..]

= Syntax (Fortran)
!Somp target update [clause[[,] clause],..]

= Clauses
device(scalar-integer-expression)
to(list)
from(list)
1f(scalar-expr)

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

target enter/exit data Constructs

= Map variables to a device data environment.
= Syntax (C/C++)

fpragma omp target enter data clause[[[,] clause]..]
fpragma omp target exit data clause[[[,] clause]..]

= Syntax (Fortran)
lSomp target enter data clause[[[,] clause]..]
l'Somp target exit data clause[[[,] clause]..]

= Clauses

1f(/ target enter data :] scalar-expression) CN?
1f(/ target exit data :] scalar-expression)
device (integer—-expression)
map ([[map-type-modifier|[,] [map-type-modifier/[,]...] map-type:]
locator—-1ist)
depend ([depend—-modifier,] dependence-type: locator-1ist)
nowalt

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Code Examples

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Map variables to a device data environment

= The host thread executes the data region
= Be careful when using the device clause

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Map variables to a device data environment

= The host thread executes the data region
= Be careful when using the device clause

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N]) map(res)
{
#pragma omp target device(0)
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[i] = some_computation(input[i], 1i);

do_some_other_ stuff_ on_host();

#pragma omp target device(0) map(res)
#pragma omp parallel for reduction(+:res)
for (i=0; i<N; i++)
res += final computation(tmp[i], i)

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Map variables to a device data environment

= The host thread executes the data region
= Be careful when using the device clause

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N]) map(res)
{
#pragma omp target device(0)
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[i] = some_computation(input[i], 1i);

do_some_other_stuff on_host(); a

#pragma omp target device(0) map(res)
#pragma omp parallel for reduction(+:res)
for (i=0; i<N; i++)

res += final computation(tmp[i], i)

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Synchronize mapped variables

= Synchronize the value of an original variable in a host data
environment with a corresponding variable in a device data
environment

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Synchronize mapped variables

= Synchronize the value of an original variable in a host data
environment with a corresponding variable in a device data
environment

#pragma omp target data map(alloc:tmp[:N]) map(to:input[:N]) map(tofrom:res)
{
#pragma omp target
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[i] = some_computation(input[i], 1i);

update_input_array_on_the_host (input);
#pragma omp target update to(input[:N])

#pragma omp target map(tofrom:res)
#pragma omp parallel for reduction(+:res)
for (i=0; i<N; i++)
res += final_ computation(input[i], tmp[i], i)

OpenMP Tutorial
Members of the OpenMP Language Committee

Synchronize mapped variables

OpenMP

Synchronize the value of an original variable in a host data
environment with a corresponding variable in a device data
environment

#pragma omp target data map(alloc:tmp[:N]) map(to:input[:N]) map(tofrom:res)
{
#pragma omp target
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[i] = some_computation(input[i], 1i);

update_input_array on_the_host (input);

#pragma omp target update to(input[:N]) i

#pragma omp target map(tofrom:res)
#pragma omp parallel for reduction(+:res)
for (i=0; i<N; i++)
res += final_ computation(input[i], tmp[i], i)

OpenMP Tutorial
Members of the OpenMP Language Committee

target data Construct

void vec mult(float* p, float* vl1l, float* v2, int
N)
{

int 1i;

init(vl, v2, N);

#pragma omp target data map(from: p[0:N])
{
#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for
for (i=0; i<N; i++)
pli] = v1[i] * v2[i];

init again(vl, v2, N);

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for

for (i=0; i<N; i++)

pli] = p[i] + (vI[i] * v2[i]);

output(p, N);

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

* The target data construct
maps variables to the device
data environment.

» structured mapping — the device
data environment is created for
the block of code enclosed by
the construct

* v1 and v2 are mapped at each
target construct.

* p IS mapped once by the
target data construct.

OpenMP

target enter/exit data Construct

void init(float *vl1l, float *v2, int N) {
for (int i=0; i<N; i++)
vi[i] = v2[i] = ...;
#pragma omp target enter data map(alloc:
. :N
void vec mult(float* p, float* vl, float* v2, ﬁ[1)
int N)
{]) void output(float *p, int N) {
int 1; ..
init(vl, v2, N); #pragma omp target exit map(from: p[:N])
}

#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for

_ : , The target enter/exit data construct maps variables
for (i=0; i<N; i++) to/from the device data environment.

pl1] = vifi] * val[i]; — unstructured mappin? — the device data environment can
u

init_again(vl, v2, N); span more than one function

* v1 and v2 are mapped at each target construct.
#pragma omp target map(to: v1[:N], v2[:N])

#pragma omp parallel for - pis allocated and remains undefined in the device data
for (i=0; i<N; i++) , environment by the target enter data map(alloc:...)
pl[i] = p[1] + (v1[1i] * v2[i]); Construct
output(p, N); - The value of p in the device data environment is
} assigned to the original variable on the host by the

target exit data map(from:...) construct.

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Programming OpenMP

GPU: asynchronous offloading

Christian Terboven RWTH
Michael Klemm Opean?

OpenMP Tutorial

OpenMP

Synchronization

OpenMP target default: synchronous operations
« CPU thread waits until OpenMP kernel/ movement is completed

Remember:
 Use target construct to
» Transfer control from the host to the target device

« Use map clause to
« Map variables between the host and target device data environments

Host thread waits until offloaded region completed
« Use the nowait clause for asynchronous execution

Remember: GPUs only allow for synchronization within a streaming multiprocessor
« Synchronization or memory fences across SMs not supported due to limited control logic
« Barriers, critical regions, locks, atomics only apply to the threads within a team
* No cache coherence between L1 caches

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Synchronization

OpenMP target default: synchronous operations
« CPU thread waits until OpenMP kernel/ movement is completed

Remember:
 Use target construct to
» Transfer control from the host to the target device
« Use map clause to
« Map variables between the host and target device dat

count = 500;
#pragma omp target map(to:b,c,d) map(from:a)
{
#pragma omp parallel for
for (i=0; i<count; i++) {
Host thread waits until offloaded region completed a[i] = b[i] * ¢ + d;
« Use the nowait clause for asynchronous execution }

a0

a[0];

Remember: GPUs only allow for synchronization within a streaming multiprocessor
« Synchronization or memory fences across SMs not supported due to limited control logic
« Barriers, critical regions, locks, atomics only apply to the threads within a team
* No cache coherence between L1 caches

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Synchronization

OpenMP target default: synchronous operations
« CPU thread waits until OpenMP kernel/ movement is completed

Remember:
 Use target construct to
» Transfer control from the host to the target device
« Use map clause to
« Map variables between the host and target device dat

count = 500;
#pragma omp target map(to:b,c,d) map(from:a)
{
#pragma omp parallel for
for (i=0; i<count; i++) {
Host thread waits until offloaded region completed a[i] = b[i] * ¢ + d;
« Use the nowait clause for asynchronous execution }

a0

a[0];

Remember: GPUs only allow for synchronization within a streaming multiprocessor
« Synchronization or memory fences across SMs not supported due to limited control logic
« Barriers, critical regions, locks, atomics only apply to the threads within a team
* No cache coherence between L1 caches

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Offloading

* A host task is generated that subroutine vec_mult(p, vi, v2, N)
. real, dimension(*) :: p, vl, v
encloses the target region. integer :: N, i
call init(vl, v2, N)
« The nowait clause specifies that jzgzg e data map(tofromivi(1:D, v2(1:), (1)
the encountering thread does not wait 1$omp parallel do
I do i=1, N/2
for the target region to complete. () = i) * va(t)
end do

!Somp end target
 The depend clause can be used ,
!Somp target nowait

for ensuring the order of execution |Somp parallel do

with respect to other tasks. do i=N/2+1, N |
p(1) = vI(i) * v2(1i)
end do
!Somp end target
!Somp end target data

call output(p, N)

target task end subroutine
A mergeable and untied task that is generated by a

target, target enter data, target exit data or target
update construct.

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Remark on Heterogeneous Computing

Slides are taken from the lecture High-Performance Computing at RWTH Aachen University
Authors include: Sandra Wienke, Julian Miller

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Heterogeneous Computing

* Heterogeneous Computing matrix vector multiplication
.« CPU & GPU are (fully) utilized @ \
. GPU
« Challenge: load balancing z
° =
« Domain decomposition CPU)
 |If load is known beforehand, static decomposition \) @)

« Exchange data if needed (e.g. halos)

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

 Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

 Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

» Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

 Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

» Asynchronicity allows, e.g.,

1. Heterogeneous computing (CPU + GPU) _ processing flow (simplified)
CPU
—
idle} GPU
: <
Ll
=
= —
GPU
conjpute l
<
v \ 4

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

 Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

» Asynchronicity allows, e.g.,

1. Heterogeneous computing (CPU + GPU) processing flow (simplified)

2. Overlap of PCle transfers in both directions
P CPU
—
idle? GPU
: <
L
=
= —
GPU
compute l
<
v v

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

 Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

» Asynchronicity allows, e.g.,

1. Heterogeneous computing (CPU + GPU) processing flow (simplified)

2. Overlap of PCle transfers in both directions
CPU
—
idle? GPU
: <
L
=
= —
GPU
MEMORY MEMORY o Utﬂi‘
CPU GPU
<num>* Can be executed simultaneously v v<

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

 Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

» Asynchronicity allows, e.g.,

1. Heterogeneous computing (CPU + GPU) processing flow (simplified)

2. Overlap of PCle transfers in both directions
CPU
—
idle? GPU
: <
L
=
= —
GPU
MEMORY MEMORY o Utﬂi‘
CPU GPU
<num>* Can be executed simultaneously v v<

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

 Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

» Asynchronicity allows, e.g.,

1. Heterogeneous computing (CPU + GPU) processing flow (simplified)

2. Overlap of PCle transfers in both directions cp
3. Overlap of data transfers and computation | U
—t>
idle? GPU
<
Ll
=
= —
GPU
MEMORY MEMORY o ute
CPU GPU
<num>* Can be executed simultaneously v v<

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

 Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

» Asynchronicity allows, e.g.,

1. Heterogeneous computing (CPU + GPU) processing flow (simplified)

2. Overlap of PCle transfers in both directions cp
3. Overlap of data transfers and computation | U
—t>
idle? GPU
<
Ll
=
= —
GPU
MEMORY MEMORY o ute
CPU GPU
<num>* Can be executed simultaneously v v<

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

» Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

» Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU) processing flow (simplified)
2. Overlap of PCle transfers in both directions
3. Overlap of data transfers and computation CPU
4. Simultaneous execution of several kernels . !__’ GPU

idle:

(if resources are available)

<
g u
= —
GPU
MEMORY e combute
CPU GPU
<num>* Can be executed simultaneously v v<

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

» Definition
« Synchronous: Control does not return until accelerator action is complete
» Asynchronous: Control returns immediately

» Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU) processing flow (simplified)
2. Overlap of PCle transfers in both directions
3. Overlap of data transfers and computation CPU
4. Simultaneous execution of several kernels . !__’ GPU

idle:

(if resources are available)

<
]
=
- ——
GPU
MEMORY
e confpute
CPU GPU
<num>* Can be executed simultaneously v v<

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

« Default: synchronous operations

» Asynchronous operations with tasks
« Execute asynchronously with dependency: task depend
« Synchronize tasks: taskwait

« Synchronize async operations - taskwait directive
» Wait for completion of an asynchronous activity

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Asynchronous Operations

« Default: synchronous operations

» Asynchronous operations with tasks
« Execute asynchronously with dependency: task depend
« Synchronize tasks: taskwait

« Synchronize async operations - taskwait directive
» Wait for completion of an asynchronous activity

#pragma omp target map(..) nowait depend(out:gpu data)

// do work on device

#pragma omp task depend(out:cpu data)

// do work on host

#pragma omp task depend(in:cpu data) depend(in:gpu data)
// combine work on host

#pragma omp taskwait

// wait for all tasks 7

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Code Examples

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

Tasks and Target Example / 1

void vec mult async(float* p, float* vl, float* v2, int N) ° If Othel’ WOI’k does nOt Involve
{ —_ .
#pragma omp target enter data map(alloc: v1[:N], v2[:N]) V1 and V2, the encounterlng
#pragma omp target nowait depend(out: vl, v2) thread on the hOSt WI” exeCUte the
compute (v1, v2, N); task asynchronously.
#pragma omp task
other work(); // execute asynchronously on host device .
‘ - v // otheriworkydoes not iivolve v;— and v2 ° The dependency reqU|rement
#pragma omp target map(from:p[0:N]) nowait depend(in: vl between the tWO target taSkS mUSt
v2) R S be satisfied before the second
{ target task starts execution.
#pragma om arallel for
fgr ?int izo? i<N; i++)
pli] = v1[i] * v2[i]; . . .
) « The taskwait directive ensures all
Joragna omp taskwait sibling tasks complete before

proceeding to the next statement.

#pragma omp target exit data map(release: v1[:N], v2[:N])
}

OpenMP Tutorial

Members of the OpenMP Language Committee

Tasks and Target Example / 2

void vec mult async(float* p, float* vl1l, float* v2, int N)

{
#pragma omp target enter data map(alloc: v1[:N], v2[:N])

#pragma omp target nowait depend(out: vl, v2)
compute(vl, v2, N);

#pragma omp target update from(v1l[:N], v2[:N]) depend(inout: vl,

v2)

#pragma omp task depend(inout: vl1l, v2)
compute on host(vl, v2); // execute asynchronously on host
device
// other work involves vl, v2

#pragma omp target update to(v1l[:N], v2[:N]) depend(inout: vl,
v2)

#pragma omp target map(from:p[0:N]) nowait depend(in: v1, v2)
{

#pragma omp parallel for
for (int i=0; i<N; i++)
pli] = v1[i] * v2[i];
}

#pragma omp taskwait

#pragma omp target exit data map(release: v1[:N], v2[:N])
}

OpenMP Tutorial
Members of the OpenMP Language Committee

OpenMP

If compute _on_host() updates v1
and v2, the depend clause must
be speC|f|ed to ensure the
execution of the target task and
the explicit task respects the
dependency.

Since we update v1 and v2 on the
host in compute _on_host(), w

need to update the data results
from compute() on the device to
the host.

After completion of
compute_on_host(), the data in
the target device is updated with
the result.

The update clause is required
before and after the explicit task.

OpenMP

Programming OpenMP

Hands-on Exercises: Jacobi

Christian Terboven RWTH
Michael Klemm Opean?

OpenMP Tutorial
Members of the OpenMP Language Committee

Jacobi on GPU OpenMIP

- Task 4: Make the code as fast as you can :-). Use sample codes in exercises/<C,Fortran>/Jacobi2 for hints

OpenMP Tutorial
Members of the OpenMP Language Committee

