
OpenMP Tutorial

Members of the OpenMP Language Committee

1

Programming OpenMP

Christian Terboven

Michael Klemm

OpenMP Tutorial

Members of the OpenMP Language Committee

2

■ Session 1: OpenMP Introduction

■ Session 2: Tasking

■ Session 3: Optimization for NUMA and SIMD

■ Session 4: What Could Possibly Go Wrong Using OpenMP

■ Session 5: Introduction to Offloading with OpenMP

■ Session 6: Advanced Offloading Topics

!Unstructured Data Movement

!Asynchronous Offloading

!Integration of GPU-Kernels (i.e., HIP)

!Detachable (GPU) tasks

!Real-World Application Case Study: NWChem

!Homework assignments ☺

Agenda (in total 7 Sessions)

OpenMP Tutorial

Members of the OpenMP Language Committee

3

Programming OpenMP

Christian Terboven

Michael Klemm

Review

OpenMP Tutorial

Members of the OpenMP Language Committee

4

Questions?

OpenMP Tutorial

Members of the OpenMP Language Committee

5

Jacobi

OpenMP Tutorial

Members of the OpenMP Language Committee

6

Example solution: Jacobi basic
 while (err > tol && iter < iter_max) {

	 err = 0.0;

#pragma omp target teams distribute parallel for reduction(max:err)\

 schedule(nonmonotonic:static,1) map(to:A[0:n*m]) map(from:Anew[0:n*m], err)

 for(j = 1; j < n-1; j++) {

 for(i = 1; i < m-1; i++) {

 Anew[j *m+ i] = 0.25 * (A[j *m+ (i+1)] + A[j *m+ (i-1)]

 + A[(j-1) *m+ i] + A[(j+1) *m+ i]);

 err = fmax(err,fabs(Anew[j*m+i]-A[j*m+i]));

 }

 }

 	 for(j = 1; j < n-1; j++) {

 for(i = 1; i < m-1; i++) {

 A[j *m+ i] = Anew[j *m+ i];

 }

 }

 …

 iter++;

 } // end while

OpenMP Tutorial

Members of the OpenMP Language Committee

7

Example solution: Jacobi data
#pragma omp target data map(to:A[0:n*m]) map(alloc:Anew[0:n*m])

 while (err > tol && iter < iter_max) {

 err = 0.0;

#pragma omp target teams distribute parallel for reduction(max:err) \

 schedule(nonmonotonic:static,1)

 for(j = 1; j < n-1; j++) {

 for(i = 1; i < m-1; i++) {

 Anew[j *m+ i] = 0.25 * (A[j *m+ (i+1)] + A[j *m+ (i-1)]

 + A[(j-1) *m+ i] + A[(j+1) *m+ i]);

 err = fmax(err,fabs(Anew[j*m+i]-A[j*m+i]));

 }

 }

#pragma omp target teams distribute parallel for schedule(nonmonotonic:static,1)

 for(j = 1; j < n-1; j++) {

 for(i = 1; i < m-1; i++) {

 A[j *m+ i] = Anew[j *m+ i];

 }

 }

 …

 iter++;

 } // end while

OpenMP Tutorial

Members of the OpenMP Language Committee

8

● clang 12.0.0 with gcc 4.8.5 from CentOS 7.9.2009

Old setup (reference numbers from 2021)

OpenMP Tutorial

Members of the OpenMP Language Committee

9

● Task 0: You might want to acquire reference measurements on the host (wo/ GPU)...

● Skipped…

● Task 1: Get it to the GPU: Parallelize only the one most compute-intensive loop

Jacobi on GPU / 1

OpenMP Tutorial

Members of the OpenMP Language Committee

10

● Task 2: Improve the data management and the amount of parallelism on the GPU

● Task 3: Optimize that scheduling of iterations for the GPU

Jacobi on GPU / 2

OpenMP Tutorial

Members of the OpenMP Language Committee

11

Programming OpenMP

Christian Terboven

Michael Klemm

GPU: unstructured data movement

OpenMP Tutorial

Members of the OpenMP Language Committee

12

■ Optimize sharing data between host and device.

■ The target data, target enter data, and target exit
data constructs map variables but do not offload code.

■ Corresponding variables remain in the device data environment for the
extent of the target data region.

■ Useful to map variables across multiple target regions.

■ The target update synchronizes an original variable with its

corresponding variable.

Map variables across multiple target regions

OpenMP Tutorial

Members of the OpenMP Language Committee

13

■ Issue data transfers to or from existing data device environment

■ Syntax (C/C++) 

#pragma omp target update [clause[[,] clause],…]  

■ Syntax (Fortran) 
!$omp target update [clause[[,] clause],…]  

■ Clauses 
device(scalar-integer-expression)  
to(list)  
from(list)  
if(scalar-expr)

target update Construct Syntax

OpenMP Tutorial

Members of the OpenMP Language Committee

14

■ Map variables to a device data environment.

■ Syntax (C/C++) 
#pragma omp target enter data clause[[[,] clause]…] 
#pragma omp target exit data clause[[[,] clause]…]

■ Syntax (Fortran) 
!$omp target enter data clause[[[,] clause]…] 
!$omp target exit data clause[[[,] clause]…]

■ Clauses 
if([target enter data :] scalar-expression) OR 
 if([target exit data :] scalar-expression) 
device(integer-expression) 
map([[map-type-modifier[,][map-type-modifier[,]...] map-type:]
locator-list)  
depend([depend-modifier,] dependence-type: locator-list) 
nowait

target enter/exit data Constructs

OpenMP Tutorial

Members of the OpenMP Language Committee

15

Code Examples

OpenMP Tutorial

Members of the OpenMP Language Committee

16

■ The host thread executes the data region

■ Be careful when using the device clause

Map variables to a device data environment

OpenMP Tutorial

Members of the OpenMP Language Committee

16

■ The host thread executes the data region

■ Be careful when using the device clause

Map variables to a device data environment

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N]) map(res)
{
 #pragma omp target device(0)
 #pragma omp parallel for
 for (i=0; i<N; i++)
 tmp[i] = some_computation(input[i], i);

 do_some_other_stuff_on_host();

 #pragma omp target device(0) map(res)
 #pragma omp parallel for reduction(+:res)
 for (i=0; i<N; i++)
 res += final_computation(tmp[i], i)
}

OpenMP Tutorial

Members of the OpenMP Language Committee

16

■ The host thread executes the data region

■ Be careful when using the device clause

Map variables to a device data environment

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N]) map(res)
{
 #pragma omp target device(0)
 #pragma omp parallel for
 for (i=0; i<N; i++)
 tmp[i] = some_computation(input[i], i);

 do_some_other_stuff_on_host();

 #pragma omp target device(0) map(res)
 #pragma omp parallel for reduction(+:res)
 for (i=0; i<N; i++)
 res += final_computation(tmp[i], i)
}

host
target

host
target

host

OpenMP Tutorial

Members of the OpenMP Language Committee

17

■ Synchronize the value of an original variable in a host data
environment with a corresponding variable in a device data
environment

Synchronize mapped variables

OpenMP Tutorial

Members of the OpenMP Language Committee

17

■ Synchronize the value of an original variable in a host data
environment with a corresponding variable in a device data
environment

Synchronize mapped variables

#pragma omp target data map(alloc:tmp[:N]) map(to:input[:N]) map(tofrom:res)
{
 #pragma omp target
 #pragma omp parallel for
 for (i=0; i<N; i++)
 tmp[i] = some_computation(input[i], i);

 update_input_array_on_the_host(input);

 #pragma omp target update to(input[:N])

 #pragma omp target map(tofrom:res)
 #pragma omp parallel for reduction(+:res)
 for (i=0; i<N; i++)
 res += final_computation(input[i], tmp[i], i)
}

OpenMP Tutorial

Members of the OpenMP Language Committee

17

■ Synchronize the value of an original variable in a host data
environment with a corresponding variable in a device data
environment

Synchronize mapped variables

#pragma omp target data map(alloc:tmp[:N]) map(to:input[:N]) map(tofrom:res)
{
 #pragma omp target
 #pragma omp parallel for
 for (i=0; i<N; i++)
 tmp[i] = some_computation(input[i], i);

 update_input_array_on_the_host(input);

 #pragma omp target update to(input[:N])

 #pragma omp target map(tofrom:res)
 #pragma omp parallel for reduction(+:res)
 for (i=0; i<N; i++)
 res += final_computation(input[i], tmp[i], i)
}

host
target

host
target

host

OpenMP Tutorial

Members of the OpenMP Language Committee

18

target data Construct

void vec_mult(float* p, float* v1, float* v2, int
N)

{

 int i;

 init(v1, v2, N);

 #pragma omp target data map(from: p[0:N])

 {

 #pragma omp target map(to: v1[:N], v2[:N])

 #pragma omp parallel for

 for (i=0; i<N; i++)

 p[i] = v1[i] * v2[i];

 init_again(v1, v2, N);

 #pragma omp target map(to: v1[:N], v2[:N])

 #pragma omp parallel for

 for (i=0; i<N; i++)

 p[i] = p[i] + (v1[i] * v2[i]);

 output(p, N);

 }

}

• The target data construct
maps variables to the device
data environment.

• structured mapping – the device
data environment is created for
the block of code enclosed by
the construct

• v1 and v2 are mapped at each
target construct.

• p is mapped once by the
target data construct.

OpenMP Tutorial

Members of the OpenMP Language Committee

19

target enter/exit data Construct

void vec_mult(float* p, float* v1, float* v2,
int N)

{

 int i;

 init(v1, v2, N);

#pragma omp target map(to: v1[:N], v2[:N])

#pragma omp parallel for

 for (i=0; i<N; i++)

 p[i] = v1[i] * v2[i];

 init_again(v1, v2, N);

#pragma omp target map(to: v1[:N], v2[:N])

#pragma omp parallel for

 for (i=0; i<N; i++)

 p[i] = p[i] + (v1[i] * v2[i]);

 output(p, N);

}

void init(float *v1, float *v2, int N) {

 for (int i=0; i<N; i++)

 v1[i] = v2[i] = ...;

#pragma omp target enter data map(alloc:
p[:N])

}

void output(float *p, int N) {

 ...

#pragma omp target exit map(from: p[:N])

}

• The target enter/exit data construct maps variables
to/from the device data environment.

– unstructured mapping – the device data environment can
span more than one function

• v1 and v2 are mapped at each target construct.

• p is allocated and remains undefined in the device data

environment by the target enter data map(alloc:...)
construct.

• The value of p in the device data environment is
assigned to the original variable on the host by the
target exit data map(from:...) construct.

OpenMP Tutorial

Members of the OpenMP Language Committee

20

Programming OpenMP

Christian Terboven

Michael Klemm

GPU: asynchronous offloading

OpenMP Tutorial

Members of the OpenMP Language Committee

21

• OpenMP target default: synchronous operations

• CPU thread waits until OpenMP kernel/ movement is completed

• Remember:

• Use target construct to

• Transfer control from the host to the target device

• Use map clause to

• Map variables between the host and target device data environments

• Host thread waits until offloaded region completed

• Use the nowait clause for asynchronous execution

• Remember: GPUs only allow for synchronization within a streaming multiprocessor

• Synchronization or memory fences across SMs not supported due to limited control logic

• Barriers, critical regions, locks, atomics only apply to the threads within a team

• No cache coherence between L1 caches

Synchronization

OpenMP Tutorial

Members of the OpenMP Language Committee

21

• OpenMP target default: synchronous operations

• CPU thread waits until OpenMP kernel/ movement is completed

• Remember:

• Use target construct to

• Transfer control from the host to the target device

• Use map clause to

• Map variables between the host and target device data environments

• Host thread waits until offloaded region completed

• Use the nowait clause for asynchronous execution

• Remember: GPUs only allow for synchronization within a streaming multiprocessor

• Synchronization or memory fences across SMs not supported due to limited control logic

• Barriers, critical regions, locks, atomics only apply to the threads within a team

• No cache coherence between L1 caches

Synchronization

count = 500;
#pragma omp target map(to:b,c,d) map(from:a)
{
 #pragma omp parallel for
 for (i=0; i<count; i++) {
 a[i] = b[i] * c + d;
 }
}
a0 = a[0];

OpenMP Tutorial

Members of the OpenMP Language Committee

21

• OpenMP target default: synchronous operations

• CPU thread waits until OpenMP kernel/ movement is completed

• Remember:

• Use target construct to

• Transfer control from the host to the target device

• Use map clause to

• Map variables between the host and target device data environments

• Host thread waits until offloaded region completed

• Use the nowait clause for asynchronous execution

• Remember: GPUs only allow for synchronization within a streaming multiprocessor

• Synchronization or memory fences across SMs not supported due to limited control logic

• Barriers, critical regions, locks, atomics only apply to the threads within a team

• No cache coherence between L1 caches

Synchronization

count = 500;
#pragma omp target map(to:b,c,d) map(from:a)
{
 #pragma omp parallel for
 for (i=0; i<count; i++) {
 a[i] = b[i] * c + d;
 }
}
a0 = a[0];

host
target

host

OpenMP Tutorial

Members of the OpenMP Language Committee

22

• A host task is generated that 
encloses the target region.

• The nowait clause specifies that 
the encountering thread does not wait 
for the target region to complete.

• The depend clause can be used 
for ensuring the order of execution 
with respect to other tasks.

Asynchronous Offloading

subroutine vec_mult(p, v1, v2, N)

 real, dimension(*) :: p, v1, v2

 integer :: N, i

 call init(v1, v2, N)

!$omp target data map(tofrom:v1(1:N), v2(1:N), p(1:N))

!$omp target nowait

!$omp parallel do

 do i=1, N/2

 p(i) = v1(i) * v2(i)

 end do

!$omp end target

!$omp target nowait

!$omp parallel do

 do i=N/2+1, N

 p(i) = v1(i) * v2(i)

 end do

!$omp end target

!$omp end target data

 call output(p, N)

end subroutinetarget task

A mergeable and untied task that is generated by a
target, target enter data, target exit data or target
update construct.

OpenMP Tutorial

Members of the OpenMP Language Committee

23

Remark on Heterogeneous Computing

Slides are taken from the lecture High-Performance Computing at RWTH Aachen University

Authors include: Sandra Wienke, Julian Miller

OpenMP Tutorial

Members of the OpenMP Language Committee

24

• Heterogeneous Computing

• CPU & GPU are (fully) utilized

• Challenge: load balancing

• Domain decomposition

• If load is known beforehand, static decomposition

• Exchange data if needed (e.g. halos)

Heterogeneous Computing

GPU

CPU

matrix vector multiplication

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

∙

�

�

�

�

�

�

=

�

�

�

�

�

�

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

Asynchronous Operations

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)

Asynchronous Operations

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E

idle

compute

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E

idle

compute

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E

idle

compute
CPU

MEMORY

GPU
MEMORY

<num>* Can be executed simultaneously

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E

idle

compute
CPU

MEMORY

GPU
MEMORY

2* 2*

<num>* Can be executed simultaneously

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions
3. Overlap of data transfers and computation

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E

idle

compute
CPU

MEMORY

GPU
MEMORY

2* 2*

<num>* Can be executed simultaneously

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions
3. Overlap of data transfers and computation

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E

idle

compute
CPU

MEMORY

GPU
MEMORY

2* 2*

3*
3*

<num>* Can be executed simultaneously

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions
3. Overlap of data transfers and computation
4. Simultaneous execution of several kernels  

(if resources are available)

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E

idle

compute
CPU

MEMORY

GPU
MEMORY

2* 2*

3*
3*

<num>* Can be executed simultaneously

OpenMP Tutorial

Members of the OpenMP Language Committee

25

• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g.,
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions
3. Overlap of data transfers and computation
4. Simultaneous execution of several kernels  

(if resources are available)

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E

idle

compute
CPU

MEMORY

GPU
MEMORY

2* 2*

3*
3*

4*
4*

4*

<num>* Can be executed simultaneously

OpenMP Tutorial

Members of the OpenMP Language Committee

26

• Default: synchronous operations

• Asynchronous operations with tasks

• Execute asynchronously with dependency: task depend

• Synchronize tasks: taskwait

• Synchronize async operations ! taskwait directive

• Wait for completion of an asynchronous activity

Asynchronous Operations

OpenMP Tutorial

Members of the OpenMP Language Committee

26

• Default: synchronous operations

• Asynchronous operations with tasks

• Execute asynchronously with dependency: task depend

• Synchronize tasks: taskwait

• Synchronize async operations ! taskwait directive

• Wait for completion of an asynchronous activity

Asynchronous Operations

#pragma omp target map(…) nowait depend(out:gpu_data)

// do work on device

#pragma omp task depend(out:cpu_data)

// do work on host

#pragma omp task depend(in:cpu_data) depend(in:gpu_data)

// combine work on host

#pragma omp taskwait

// wait for all tasks

OpenMP Tutorial

Members of the OpenMP Language Committee

27

Code Examples

OpenMP Tutorial

Members of the OpenMP Language Committee

28

Tasks and Target Example / 1

void vec_mult_async(float* p, float* v1, float* v2, int N)

{

#pragma omp target enter data map(alloc: v1[:N], v2[:N])

 #pragma omp target nowait depend(out: v1, v2)

 compute(v1, v2, N);

 #pragma omp task

 other_work(); // execute asynchronously on host device

 // other_work does not involve v1 and v2

 #pragma omp target map(from:p[0:N]) nowait depend(in: v1,
v2)

 {

 #pragma omp parallel for

 for (int i=0; i<N; i++)

 p[i] = v1[i] * v2[i];

 }

 #pragma omp taskwait

#pragma omp target exit data map(release: v1[:N], v2[:N])

}

• If other_work() does not involve
v1 and v2, the encountering
thread on the host will execute the
task asynchronously.

• The dependency requirement
between the two target tasks must
be satisfied before the second
target task starts execution.

• The taskwait directive ensures all
sibling tasks complete before
proceeding to the next statement.

OpenMP Tutorial

Members of the OpenMP Language Committee

29

Tasks and Target Example / 2

void vec_mult_async(float* p, float* v1, float* v2, int N)

{

#pragma omp target enter data map(alloc: v1[:N], v2[:N])

 #pragma omp target nowait depend(out: v1, v2)

 compute(v1, v2, N);

 #pragma omp target update from(v1[:N], v2[:N]) depend(inout: v1,
v2)

 #pragma omp task depend(inout: v1, v2)

 compute_on_host(v1, v2); // execute asynchronously on host
device

 // other_work involves v1, v2

 #pragma omp target update to(v1[:N], v2[:N]) depend(inout: v1,
v2)

 #pragma omp target map(from:p[0:N]) nowait depend(in: v1, v2)

 {

 #pragma omp parallel for

 for (int i=0; i<N; i++)

 p[i] = v1[i] * v2[i];

 }

 #pragma omp taskwait

#pragma omp target exit data map(release: v1[:N], v2[:N])

}

• If compute_on_host() updates v1
and v2, the depend clause must
be specified to ensure the
execution of the target task and
the explicit task respects the
dependency.

• Since we update v1 and v2 on the
host in compute_on_host(), we
need to update the data results
from compute() on the device to
the host.

• After completion of
compute_on_host(), the data in
the target device is updated with
the result.

• The update clause is required
before and after the explicit task.

OpenMP Tutorial

Members of the OpenMP Language Committee

30

Programming OpenMP

Christian Terboven

Michael Klemm

Hands-on Exercises: Jacobi

OpenMP Tutorial

Members of the OpenMP Language Committee

31

● Task 0: You might want to acquire reference measurements on the host (wo/ GPU)...

● Task 1: Get it to the GPU: Parallelize only the one most compute-intensive loop

● Task 2: Improve the data management and the amount of parallelism on the GPU

● Task 3: Optimize that scheduling of iterations for the GPU

● Task 4: Make the code as fast as you can :-). Use sample codes in exercises/<C,Fortran>/Jacobi2 for hints

Jacobi on GPU

