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■ Session 1: OpenMP Introduction

■ Session 2: Tasking

■ Session 3: Optimization for NUMA and SIMD

■ Session 4: What Could Possibly Go Wrong Using OpenMP

■ Session 5: Introduction to Offloading with OpenMP

■ Session 6: Advanced Offloading Topics


!Unstructured Data Movement

!Asynchronous Offloading

!Integration of GPU-Kernels (i.e., HIP)

!Detachable (GPU) tasks

!Real-World Application Case Study: NWChem

!Homework assignments ☺


Agenda (in total 7 Sessions)
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Review
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Questions?
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Jacobi
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Example solution: Jacobi basic
  while ( err > tol && iter < iter_max ) {

	 err = 0.0;


#pragma omp target teams distribute parallel for reduction(max:err)\  

            schedule(nonmonotonic:static,1) map(to:A[0:n*m]) map(from:Anew[0:n*m], err)

        for( j = 1; j < n-1; j++) {

            for( i = 1; i < m-1; i++ ) {

                Anew[j *m+ i] = 0.25 * ( A[j     *m+ (i+1)] + A[j     *m+ (i-1)]

                                     +   A[(j-1) *m+ i]     + A[(j+1) *m+ i]);

                err = fmax(err,fabs(Anew[j*m+i]-A[j*m+i]));

            }

        }

 	 for( j = 1; j < n-1; j++) {

            for( i = 1; i < m-1; i++ ) {

                A[j *m+ i] = Anew[j *m+ i];

            }

        }

        …

        iter++;

    } // end while
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Example solution: Jacobi data
#pragma omp target data map(to:A[0:n*m]) map(alloc:Anew[0:n*m])

    while ( err > tol && iter < iter_max ) {

        err = 0.0;


#pragma omp target teams distribute parallel for reduction(max:err)  \

            schedule(nonmonotonic:static,1)

        for( j = 1; j < n-1; j++) {

            for( i = 1; i < m-1; i++ ) {

                Anew[j *m+ i] = 0.25 * ( A[j     *m+ (i+1)] + A[j     *m+ (i-1)]

                                     +   A[(j-1) *m+ i]     + A[(j+1) *m+ i]);

                err = fmax(err,fabs(Anew[j*m+i]-A[j*m+i]));

            }

        }


#pragma omp target teams distribute parallel for schedule(nonmonotonic:static,1)

        for( j = 1; j < n-1; j++) {

            for( i = 1; i < m-1; i++ ) {

                A[j *m+ i] = Anew[j *m+ i];

            }

        }

        …

        iter++;

    } // end while
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● clang 12.0.0 with gcc 4.8.5 from CentOS 7.9.2009


Old setup (reference numbers from 2021)
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● Task 0: You might want to acquire reference measurements on the host (wo/ GPU)...


● Skipped…


● Task 1: Get it to the GPU: Parallelize only the one most compute-intensive loop


Jacobi on GPU / 1
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● Task 2: Improve the data management and the amount of parallelism on the GPU


● Task 3: Optimize that scheduling of iterations for the GPU


Jacobi on GPU / 2
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Programming OpenMP

Christian Terboven

Michael Klemm

GPU: unstructured data movement
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■ Optimize sharing data between host and device.

■ The target data, target enter data, and target exit 
data constructs map variables but do not offload code.


■ Corresponding variables remain in the device data environment for the 
extent of the target data region.


■ Useful to map variables across multiple target regions.

■ The target update synchronizes an original variable with its 

corresponding variable.

Map variables across multiple target regions
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■ Issue data transfers to or from existing data device environment

■ Syntax (C/C++) 

#pragma omp target update [clause[[,] clause],…]  

■ Syntax (Fortran) 
!$omp target update [clause[[,] clause],…]  

■ Clauses 
device(scalar-integer-expression)  
to(list)  
from(list)  
if(scalar-expr)

target update Construct Syntax
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■ Map variables to a device data environment. 

■ Syntax (C/C++) 
#pragma omp target enter data clause[[[,] clause]…] 
#pragma omp target exit data clause[[[,] clause]…]


■ Syntax (Fortran) 
!$omp target enter data clause[[[,] clause]…] 
!$omp target exit data clause[[[,] clause]…]


■ Clauses 
if([ target enter data :] scalar-expression) OR 
   if([ target exit data :] scalar-expression) 
device(integer-expression) 
map([[map-type-modifier[ ,][map-type-modifier[,]...] map-type:] 
locator-list)          
depend([depend-modifier,] dependence-type: locator-list) 
nowait

target enter/exit data Constructs
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Code Examples
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■ The host thread executes the data region

■ Be careful when using the device clause

Map variables to a device data environment
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■ The host thread executes the data region

■ Be careful when using the device clause

Map variables to a device data environment

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N]) map(res)
{
  #pragma omp target device(0) 
  #pragma omp parallel for
    for (i=0; i<N; i++)
      tmp[i] = some_computation(input[i], i);

  do_some_other_stuff_on_host();

  #pragma omp target device(0) map(res) 
  #pragma omp parallel for reduction(+:res)
    for (i=0; i<N; i++)
      res += final_computation(tmp[i], i)
}
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■ The host thread executes the data region

■ Be careful when using the device clause

Map variables to a device data environment

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N]) map(res)
{
  #pragma omp target device(0) 
  #pragma omp parallel for
    for (i=0; i<N; i++)
      tmp[i] = some_computation(input[i], i);

  do_some_other_stuff_on_host();

  #pragma omp target device(0) map(res) 
  #pragma omp parallel for reduction(+:res)
    for (i=0; i<N; i++)
      res += final_computation(tmp[i], i)
}

host
target

host
target

host
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■ Synchronize the value of an original variable in a host data 
environment with a corresponding variable in a device data 
environment

Synchronize mapped variables
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■ Synchronize the value of an original variable in a host data 
environment with a corresponding variable in a device data 
environment

Synchronize mapped variables

#pragma omp target data map(alloc:tmp[:N]) map(to:input[:N]) map(tofrom:res)
{
  #pragma omp target 
  #pragma omp parallel for
    for (i=0; i<N; i++)
      tmp[i] = some_computation(input[i], i);

  update_input_array_on_the_host(input);

  #pragma omp target update to(input[:N])

  #pragma omp target map(tofrom:res)
  #pragma omp parallel for reduction(+:res)
    for (i=0; i<N; i++)
      res += final_computation(input[i], tmp[i], i)
}
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■ Synchronize the value of an original variable in a host data 
environment with a corresponding variable in a device data 
environment

Synchronize mapped variables

#pragma omp target data map(alloc:tmp[:N]) map(to:input[:N]) map(tofrom:res)
{
  #pragma omp target 
  #pragma omp parallel for
    for (i=0; i<N; i++)
      tmp[i] = some_computation(input[i], i);

  update_input_array_on_the_host(input);

  #pragma omp target update to(input[:N])

  #pragma omp target map(tofrom:res)
  #pragma omp parallel for reduction(+:res)
    for (i=0; i<N; i++)
      res += final_computation(input[i], tmp[i], i)
}

host
target

host
target

host
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target data Construct

void vec_mult(float* p, float* v1, float* v2, int 
N)

{

  int i;

  init(v1, v2, N);


  #pragma omp target data map(from: p[0:N]) 

  {

    #pragma omp target map(to: v1[:N], v2[:N])

    #pragma omp parallel for 

    for (i=0; i<N; i++)

      p[i] = v1[i] * v2[i];


    init_again(v1, v2, N);


    #pragma omp target map(to: v1[:N], v2[:N])

    #pragma omp parallel for

    for (i=0; i<N; i++)

      p[i] = p[i] + (v1[i] * v2[i]);


    output(p, N);

  }

}

• The target data construct 
maps variables to the device 
data environment.


• structured mapping – the device 
data environment is created for 
the block of code enclosed by 
the construct


• v1 and v2 are mapped at each 
target construct.  


• p is mapped once by the 
target data construct. 
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target enter/exit data Construct

void vec_mult(float* p, float* v1, float* v2, 
int N)

{

  int i;

  init(v1, v2, N);


#pragma omp target map(to: v1[:N], v2[:N])

#pragma omp parallel for 

  for (i=0; i<N; i++)

    p[i] = v1[i] * v2[i];


  init_again(v1, v2, N);


#pragma omp target map(to: v1[:N], v2[:N])

#pragma omp parallel for

  for (i=0; i<N; i++)

    p[i] = p[i] + (v1[i] * v2[i]);


  output(p, N);

}

void init(float *v1, float *v2, int N) {

  for (int i=0; i<N; i++)

    v1[i] = v2[i] = ...;

#pragma omp target enter data map(alloc: 
p[:N])

}


void output(float *p, int N) {

  ...

#pragma omp target exit map(from: p[:N])

}

• The target enter/exit data construct maps variables 
to/from the  device data environment.


– unstructured mapping – the device data environment can 
span more than one function


• v1 and v2 are mapped at each target construct.  

• p is allocated and remains undefined in the device data 

environment by the target enter data map(alloc:...) 
construct.


• The value of p in the device data environment is 
assigned to the original variable on the host by the 
target exit data map(from:...) construct.
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Programming OpenMP

Christian Terboven

Michael Klemm

GPU: asynchronous offloading
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• OpenMP target default: synchronous operations

• CPU thread waits until OpenMP kernel/ movement is completed


• Remember:

• Use target construct to


• Transfer control from the host to the target device

• Use map clause to


• Map variables between the host and target device data environments


• Host thread waits until offloaded region completed

• Use the nowait clause for asynchronous execution


• Remember: GPUs only allow for synchronization within a streaming multiprocessor

• Synchronization or memory fences across SMs not supported due to limited control logic

• Barriers, critical regions, locks, atomics only apply to the threads within a team 

• No cache coherence between L1 caches 

Synchronization
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• OpenMP target default: synchronous operations

• CPU thread waits until OpenMP kernel/ movement is completed


• Remember:

• Use target construct to


• Transfer control from the host to the target device

• Use map clause to


• Map variables between the host and target device data environments


• Host thread waits until offloaded region completed

• Use the nowait clause for asynchronous execution


• Remember: GPUs only allow for synchronization within a streaming multiprocessor

• Synchronization or memory fences across SMs not supported due to limited control logic

• Barriers, critical regions, locks, atomics only apply to the threads within a team 

• No cache coherence between L1 caches 

Synchronization

count = 500;
#pragma omp target map(to:b,c,d) map(from:a)
{
  #pragma omp parallel for
    for (i=0; i<count; i++) {
      a[i] = b[i] * c + d;
    }
}
a0 = a[0];
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• OpenMP target default: synchronous operations

• CPU thread waits until OpenMP kernel/ movement is completed


• Remember:

• Use target construct to


• Transfer control from the host to the target device

• Use map clause to


• Map variables between the host and target device data environments


• Host thread waits until offloaded region completed

• Use the nowait clause for asynchronous execution


• Remember: GPUs only allow for synchronization within a streaming multiprocessor

• Synchronization or memory fences across SMs not supported due to limited control logic

• Barriers, critical regions, locks, atomics only apply to the threads within a team 

• No cache coherence between L1 caches 

Synchronization

count = 500;
#pragma omp target map(to:b,c,d) map(from:a)
{
  #pragma omp parallel for
    for (i=0; i<count; i++) {
      a[i] = b[i] * c + d;
    }
}
a0 = a[0];

host
target

host
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• A host task is generated that 
encloses the target region.


• The nowait clause specifies that 
the encountering thread does not wait 
for the target region to complete.


• The depend clause can be used 
for ensuring the order of execution 
with respect to other tasks.

Asynchronous Offloading

subroutine vec_mult(p, v1, v2, N)

  real, dimension(*) :: p, v1, v2

  integer :: N, i

  call init(v1, v2, N)


!$omp target data map(tofrom:v1(1:N), v2(1:N), p(1:N))

!$omp target nowait

!$omp parallel do

  do i=1, N/2

    p(i) = v1(i) * v2(i)

  end do

!$omp end target


!$omp target nowait

!$omp parallel do

  do i=N/2+1, N

    p(i) = v1(i) * v2(i)

  end do

!$omp end target

!$omp end target data


  call output(p, N)

end subroutinetarget task


A mergeable and untied task that is generated by a 
target, target enter data, target exit data or target 
update construct.
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Remark on Heterogeneous Computing

Slides are taken from the lecture High-Performance Computing at RWTH Aachen University

Authors include: Sandra Wienke, Julian Miller
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• Heterogeneous Computing

• CPU & GPU are (fully) utilized


• Challenge: load balancing 


• Domain decomposition

• If load is known beforehand, static decomposition

• Exchange data if needed (e.g. halos)

Heterogeneous Computing

GPU

CPU

matrix vector multiplication
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• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

Asynchronous Operations
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• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g., 
1. Heterogeneous computing (CPU + GPU)

Asynchronous Operations
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• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g., 
1. Heterogeneous computing (CPU + GPU)

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E

idle

compute
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• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g., 
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions

Asynchronous Operations

processing flow (simplified)

CPU

GPU

GPU

TI
M

E
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• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g., 
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions

Asynchronous Operations

processing flow (simplified)
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GPU
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CPU

MEMORY

GPU
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<num>* Can be executed simultaneously
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• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g., 
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions
3. Overlap of data transfers and computation

Asynchronous Operations

processing flow (simplified)
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• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g., 
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3. Overlap of data transfers and computation

Asynchronous Operations
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• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g., 
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions
3. Overlap of data transfers and computation
4. Simultaneous execution of several kernels  

(if resources are available)

Asynchronous Operations
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• Definition
• Synchronous: Control does not return until accelerator action is complete
• Asynchronous: Control returns immediately

• Asynchronicity allows, e.g., 
1. Heterogeneous computing (CPU + GPU)
2. Overlap of PCIe transfers in both directions
3. Overlap of data transfers and computation
4. Simultaneous execution of several kernels  

(if resources are available)

Asynchronous Operations
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• Default: synchronous operations

• Asynchronous operations with tasks


• Execute asynchronously with dependency: task depend

• Synchronize tasks: taskwait


• Synchronize async operations ! taskwait directive

• Wait for completion of an asynchronous activity

Asynchronous Operations
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• Default: synchronous operations

• Asynchronous operations with tasks


• Execute asynchronously with dependency: task depend

• Synchronize tasks: taskwait


• Synchronize async operations ! taskwait directive

• Wait for completion of an asynchronous activity

Asynchronous Operations

#pragma omp target map(…) nowait depend(out:gpu_data)

// do work on device

#pragma omp task depend(out:cpu_data)

// do work on host

#pragma omp task depend(in:cpu_data) depend(in:gpu_data)

// combine work on host

#pragma omp taskwait

// wait for all tasks
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Code Examples
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Tasks and Target Example / 1

void vec_mult_async(float* p, float* v1, float* v2, int N)

{

#pragma omp target enter data map(alloc: v1[:N], v2[:N])


  #pragma omp target nowait depend(out: v1, v2)

    compute(v1, v2, N);


  #pragma omp task

    other_work(); // execute asynchronously on host device

                  // other_work does not involve v1 and v2


  #pragma omp target map(from:p[0:N]) nowait depend(in: v1, 
v2)

  {

    #pragma omp parallel for

    for (int i=0; i<N; i++)

      p[i] = v1[i] * v2[i];

  }


  #pragma omp taskwait


#pragma omp target exit data map(release: v1[:N], v2[:N])

}

• If other_work() does not involve 
v1 and v2, the encountering 
thread on the host will execute the 
task asynchronously.


• The dependency requirement 
between the two target tasks must 
be satisfied before the second 
target task starts execution.


• The taskwait directive ensures all 
sibling tasks complete before 
proceeding to the next statement.
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Tasks and Target Example / 2

void vec_mult_async(float* p, float* v1, float* v2, int N)

{

#pragma omp target enter data map(alloc: v1[:N], v2[:N])


  #pragma omp target nowait depend(out: v1, v2)

    compute(v1, v2, N);


  #pragma omp target update from(v1[:N], v2[:N]) depend(inout: v1, 
v2)


  #pragma omp task depend(inout: v1, v2)

    compute_on_host(v1, v2); // execute asynchronously on host 
device

                             // other_work involves v1, v2


  #pragma omp target update to(v1[:N], v2[:N]) depend(inout: v1, 
v2)


  #pragma omp target map(from:p[0:N]) nowait depend(in: v1, v2)

  {

    #pragma omp parallel for

    for (int i=0; i<N; i++)

      p[i] = v1[i] * v2[i];

  }


  #pragma omp taskwait


#pragma omp target exit data map(release: v1[:N], v2[:N])

}

• If compute_on_host() updates v1 
and v2, the depend clause must 
be specified to ensure the 
execution of the target task and 
the explicit task respects the 
dependency.


• Since we update v1 and v2 on the 
host in compute_on_host(), we 
need to update the data results 
from compute() on the device to 
the host.


• After completion of 
compute_on_host(), the data in 
the target device is updated with 
the result.


• The update clause is required 
before and after the explicit task.
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Programming OpenMP

Christian Terboven

Michael Klemm

Hands-on Exercises: Jacobi
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● Task 0: You might want to acquire reference measurements on the host (wo/ GPU)...


● Task 1: Get it to the GPU: Parallelize only the one most compute-intensive loop


● Task 2: Improve the data management and the amount of parallelism on the GPU


● Task 3: Optimize that scheduling of iterations for the GPU


● Task 4: Make the code as fast as you can :-). Use sample codes in exercises/<C,Fortran>/Jacobi2 for hints

Jacobi on GPU


