OpenMP

Programming OpenMP

Christian Terboven
Michael Klemm

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Agenda (in total 7 Sessions)

= Session 1: OpenMP Introduction
= Session 2: Tasking

= Session 3: Optimization for NUMA and SIMD
= Session 4: What Could Possibly Go Wrong Using OpenMP

= Session 5: Introduction to Offloading with OpenMP

-~ Review of Session 3 / homework assignments
—>0OpenMP device and execution model

— Offload basics and exploiting parallelism

—> Optimizing data transfers

—->Homework assignments ©
= Session 6: Advanced Offloading Topics
= Session 7: Selected / Remaining Topics

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Programming OpenMP
Review
Christian Terboven RWTH
Michael Klemm OpenMP

Introduction to Offloading with OpenMP
i oven

OpenMP

Questions?

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

P

Introduction to Offloading with OpenMP
Christian Terboven

Example solution: Pl w/ SIMD

OpenMP

#pragma omp simd private (£X) reduction (+:£Sum)
for (i =0; 1 < n; i +=1)
{
fX = fH * ((double)i + 0.5);
fSum += £ (£X);
}

return fH * fSum;

- Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Jacobi

Introduction to Offloading with OpenMP
Christian Terboven

Example solution: Jacobi opt. for NUMA / 1 OpenMP

/* Initilize initial condition and RHS */
#pragma omp parallel for private(i, xx, yy) // or collapse(2) instead of private (i)
for (3j=0; j<m; j++){
for (i=0; i<n; i++){

xx = -1.0 + *dx * (i-1);

yy = -1.0 + *dy * (j-1);

U(j,i) = 0.0;

F(j,i) = -alpha * (1.0 - xx*xx) * (1.0 - yy*yy)

- 2.0 * (1.0 - xx*xx) - 2.0 * (1.0 - yy*yy)-

m Introduction to Offloading with OpenMP

Christian Terboven

Example solution: Jacobi opt. for NUMA / 2

OpenMP

#pragma omp parallel
{

/* copy new solution into old */
#pragma omp for private(i) // or collapse(2) instead of private (i)
for (j=0; j<m; j++)
for (i=0; i<n; i++){
UOLD(j,1i) = U(J,1)
}

/* compute stencil, residual and update */
#pragma omp for private(i, resid) reduction(+:error) // or collapse(2)
for (§=1; j<m-1; j++){
for (i=1l; i<n-1; i++){
resid =(/* left out for brevity */) / b;

/* update solution */
U(j,i) = UOLD(j,i) - omega * resid;

/* accumulate residual error */
error =error + resid*resid;

- Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Introduction to Offloading
with OpenMP

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

OpenMP device and execution model

11 Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Running Example for this Presentation: saxpy

void saxpy() {
float a, xX[SZ], V[SZ];

double t = 0.0;)
double tb, te: Timing code (not needed, just to have
4 4

tb = omp get wtime(); a bit more code to show ©)
#pragma omp parallel for firstprivate(a) <

for (int 1 = 0; i < SZ; 1i++) { This is the code we want to execute on a

yli] = a * x[1] + y[1]; >targetdevice(i.e.,GPU)

: <

te = omp get wtime(); o _

t = te - tb: Timing code (not needed, just to have

printf("Time of kernel: %1f\n", t); a bit more code to show ©)

-

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Running Example for this Presentation: saxpy

void saxpy() {
float a, x[SZ], y[SZ];

double t = 0.0;)
double tb, te: Timing code (not needed, just to have
4 4

tb = omp get wtime(); a bit more code to show ©)
#pragma omp parallel for firstprivate(a) <

for (int i1 = 0; 1 < SZ; i++) { This is the code we want to execute on a

yl1] = a * x[1] + y[1]; >'targetdevice(i.e.,GPU)

} <

te = omp get wtime(); o _

t = te —_tb-_ Timing code (not needed, just to have

printf("Time of kernel: %1f\n", t a bit more code to show ©)

Don’t do this at home!

Use a BLAS library for this!

Introduction to Offloading with OpenMP
Christian Terboven

Device Model OpenMP

= As of version 4.0 the OpenMP API supports accelerators/coprocessors

= Device model:
- One host for “traditional” multi-threading
- Multiple accelerators/coprocessors of the same kind for offloading

Accelerators

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP Execution Model for Devices

OpenMP

= Offload region and its data environment are bound to the lexical scope
of the construct

—~>Data environment is created at the opening curly brace

- Data environment is automatically destroyed at the closing curly brace

- Data transfers (if needed) are done at the curly braces, too:
- Upload data from the host to the target device at the opening curly brace.
—~>Download data from the target device at the closing curly brace.

Introduction to Officaaiie

Christian Terboven

01010101011010
01111010110101

00010101010101
01010101010201
01011010000100
10101010101010
00110011100110

!Somp target

OpenMP Execution Model for Devices

OpenMP

= Offload region and its data environment are bound to the lexical scope
of the construct

—~>Data environment is created at the opening curly brace

- Data environment is automatically destroyed at the closing curly brace

- Data transfers (if needed) are done at the curly braces, too:
- Upload data from the host to the target device at the opening curly brace.
—~>Download data from the target device at the closing curly brace.

Introduction to Officaaiie

Christian Terboven

01010101011010

01111010110101
00010101010101
01010101010201
01011010000100
10101010101010
00110011100110

!Somp target &

! Somp

map(alloc:A) &

OpenMP Execution Model for Devices

OpenMP

= Offload region and its data environment are bound to the lexical scope
of the construct

—~>Data environment is created at the opening curly brace
- Data environment is automatically destroyed at the closing curly brace

- Data transfers (if needed) are done at the curly braces, too:
- Upload data from the host to the target device at the opening curly brace.

—~>Download data from the target device at the closing curly brace.

Introduction to Officaaiie

Christian Terboven

01010101011010

01111010110101
00010101010101
01010101010201
01011010000100
10101010101010
0011001

!Somp target
map(alloc:A) &

! Somp
I Somp

map(to:A)

&

&

01010101011010
01111010110101
00010101010101
01010101010201
01011010000100
10101010101010
00110011100110

OpenMP Execution Model for Devices

OpenMP

= Offload region and its data environment are bound to the lexical scope
of the construct
—~>Data environment is created at the opening curly brace
- Data environment is automatically destroyed at the closing curly brace

- Data transfers (if needed) are done at the curly braces, too:
- Upload data from the host to the target device at the opening curly brace.

—~>Download data from the target device at the closing curly brace.

Introduction to Officaaiie

Christian Terboven

01010101011010

01111010110101
00010101010101
01010101010201
01011010000100
10101010101010
0011001

!Somp target
map(alloc:A) &

! Somp
I Somp
! Somp

map(to:A)
map(from:A)

&

&
&

11011101011010

11111010110101
00010101010000
11110100110301
01011010111100
10101010101010
11Q011Q11100QL

OpenMP Execution Model for Devices

OpenMP

= Offload region and its data environment are bound to the lexical scope
of the construct

—~>Data environment is created at the opening curly brace
- Data environment is automatically destroyed at the closing curly brace

- Data transfers (if needed) are done at the curly braces, too:
- Upload data from the host to the target device at the opening curly brace.

—~>Download data from the target device at the closing curly brace.

Introduction to Officaaiie

Christian Terboven

11011101011010

11111010110101
00010101010000
11110100110301
01011010111100
10101010101010
1100111110001

!Somp target

&

! Somp map(alloc:A) &

lSomp map(to:A)
! Somp map(from:A)
call compute(A)

&
&

11011101011010
11111010110101
00010101010000
11110100110301
01011010111100
10101010101010
11Q01LL L svv sy

OpenMP Execution Model for Devices

OpenMP

= Offload region and its data environment are bound to the lexical scope
of the construct

—~>Data environment is created at the opening curly brace

- Data environment is automatically destroyed at the closing curly brace

- Data transfers (if needed) are done at the curly braces, too:
- Upload data from the host to the target device at the opening curly brace.
—~>Download data from the target device at the closing curly brace.

Introduction to Officaaiie

Christian Terboven

11011101011010

11111010110101
00010101010000
11110100110301
01011010111100
10101010101010
1100111110001

!Somp target

&

! Somp map(alloc:A) &

lSomp map(to:A)
! Somp map(from:A)
call compute(A)

&
&

OpenMP Execution Model for Devices

OpenMP

= Offload region and its data environment are bound to the lexical scope
of the construct

—~>Data environment is created at the opening curly brace

- Data environment is automatically destroyed at the closing curly brace

- Data transfers (if needed) are done at the curly braces, too:
- Upload data from the host to the target device at the opening curly brace.
—~>Download data from the target device at the closing curly brace.

Introduction to Officaaiie

Christian Terboven

11011101011010

11111010110101
00010101010000
11110100110301
01011010111100
10101010101010
1100111110001

!Somp target

&

! Somp map(alloc:A) &

lSomp map(to:A)

! Somp map(from:A)
call compute(A)

!Somp end target

&
&

OpenMP

OpenMP for Devices - Constructs

= Transfer control and data from the host to the device
= Syntax (C/C++)

#pragma omp target [clause[[,] clause],..]
structured-block

= Syntax (Fortran)
!Somp target [clause[[,] clause],..]
structured-block
!Somp end target

= Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom}:] list)
1f(scalar-expr)

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Example: saxpy

void saxpy() {
float a, x[SZ], y[SZ];
double t = 0.0;
double tb, te;
tb = omp get wtime();
#pragma omp target
for (int 1 = 0; 1 < SZ; i++) {
y[i] = a * x[1] + y[i];
}
te = omp get wtime();
t = te - tb;
printf("Time of kernel: %1f\n", t);

clang -fopenmp --offload-arch=gfx90a ...

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Example: saxpy

void saxpy() {
float a, x[SZ], V[SZ];
double t = 0.0;
double tb, te;
tb = omp get wtime();
#pragma omp target
for (int i = 0; i < SZ; i++) {
y[i] = a * xX[1] + y[1];

}

te = omp get wtime();

t = te - tb;

printf("Time of kernel: %1f\n", t);

A

clang -fopenmp --offload-arch=gfx90a ...

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

The compiler identifies variables that are
used in the target region.

Example: saxpy

void saxpy() {
float a, x[SZ]
double t = 0.0;
double tb, te;
tb = omp get wtime();
#pragma omp target
for (int 1 = 0; 1 < SZ; i++) {

} a * x[1] + y[i];

te = omp get wtime();
t = te - tb;
printf("Time of kernel: %1f\n", t);

clang -fopenmp --offload-arch=gfx90a ...

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

The compiler identifies variables that are
used in the target region.

Example: saxpy

void saxpy() {
float a, x[SZ]
double t = 0.0;
double tb, te;
tb = omp get wtime();
#pragma omp target“map(tofrom:y[0:SZ])"
for (int i = 0; 1 < SZ; i++) {

} a * x[1] + y[i];

te = omp get wtime();
t = te - tb;
printf("Time of kernel: %1f\n", t);

clang -fopenmp --offload-arch=gfx90a ...

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

The compiler identifies variables that are
used in the target region.

Example: saxpy

void saxpy() {
float a, x[SZ] All accessed arrays are copied from
double t = 0.0; host to device and back
double tb, te;
tb = omp get wtime();
#pragma omp target“map(tofrom:y[0:SZ])"
for (int i = 0; 1 < SZ; i++) {

} a * x[1] + y[i];

te_= omp get wtime(); X[0:5Z]
printf("Time of kernel: %$1f\n", t);

y[0:SZ]

clang -fopenmp --offload-arch=gfx90a ...

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

The compiler identifies variables that are
used in the target region.

Example: saxpy

void saxpy() {
float a, x[SZ] All accessed arrays are copied from
double t = 0.0; host to device and back
double tb, te;
tb = omp get wtime();
#pragma omp target“map(tofrom:y[0:SZ])"
for (int i = 0; 1 < SZ; i++) {

} a * x[1] + y[i];

te_= omp get wtime(); X[0:5Z]
printf("Time of kernel: %$1f\n", t);

y[0:SZ]

Copying x back is not necessary: it
was not changed.

clang -fopenmp --offload-arch=gfx90a ...

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

The compiler identifies variables that are
used in the target region.

Example: saxpy

void saxpy() {
float a, x[SZ] All accessed arrays are copied from
double t = 0.0; host to device and back
double tb, te;
tb = omp get wtime();
#pragma omp target“map(tofrom:y[0:SZ])"
for (int i = 0; 1 < SZ; i++) {

} a * x[1] + y[i];

te_= omp get wtime(); X[0:5Z]
printf("Time of kernel: %$1f\n", t);

y[0:SZ]

Copying x back is not necessary: it
was not changed.

clang -fopenmp --offload-arch=gfx90a ...

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Example: saxpy

The compiler identifies variables that are

used in the target region.

subroutine saxpy(a, X, y, n)
use iso fortran env

integer :: n, i All accessed arrays are copied from

real (kind=real32) :: a host to device and back
real (kind=real32), dimensioc

!Somp target “map(tofrom:y(l:n))"”

do i=1,n
= a * x(i) + y(i)
end do
!Somp end target
end subroutine I ;212;

Copying x back is not necessary: it

was not changed.

flang -fopenmp --offload-arch=gfx90a ...

Introduction to Offloading with OpenMP
Christian Terboven

Example: saxpy OpenMP

void saxpy() {
double a, x[SZ], Y[SZ];
double t = 0.0;
double tb, te; x[0:SZ]
tb = omp get wtime(); y[0:S%]
#pragma omp target map(to:x[0:SZ]) \
map(tofrom:y[0:SZ])
for (int i = 0; i < SZ; i++) {
y[i] = a * x[1] + y[1];

} . B y[0:5Z]
te = omp get wtime();

t = te - tb;
printf("Time of kernel: %1f\n", t);

clang -fopenmp --offload-arch=gfx90a ...

Introduction to Offloading with OpenMP
Christian Terboven

Example: saxpy OpenMP

void saxpy(float a, float* x, float* vy,
int sz) {
double t = 0.0;
double tb, te; x[0:52]
tb = omp get wtime(); y[0:sz]
#pragma omp target map(to:x[0:sz]) \
map(tofrom:y[0:s2])
for (int i = 0; i < sz; i++) {
y[i] = a * x[1] + y[1i];

A

} _ y[0:s2]
te = omp get wtime();

t = te - tb;
printf("Time of kernel: %1f\n", t);

clang -fopenmp --offload-arch=gfx90a

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

The compiler cannot determine the size of

void saxpy(float a, float* IS e SIS SR

int sz) {
double t = 0.0;
double tb, te;
tb = omp get wtime();
#pragma omp target map(to:x[0:sz]) \
map(tofrom:y[0:s2])
for (int 1 = 0; 1 < sz; i++)

a * x[i] + y[i];
}

te = omp get wtime();
t = te - tb;
printf("Time of kernel: %1f\n", t);

Example: saxpy

} Programmers have to help the compiler
with the size of the data transfer needed.

clang -fopenmp --offload-arch=gfx90a

Introduction to Offloading with OpenMP

Christian Terboven

OpenMP

Exploiting (Multilevel) Parallelism

20 Introduction to Offloading with OpenMP
Christian Terboven

Creating Parallelism on the Target Device OpenMP

= The target construct transfers the control flow to the target device

—> Transfer of control is sequential and synchronous
- This is intentional!

= OpenMP separates offload and parallelism
- Programmers need to explicitly create parallel regions on the target device
—In theory, this can be combined with any OpenMP construct

—In practice, there is only a useful subset of OpenMP features for a target device
such as a GPU, e.g., no I/O, limited use of base language features.

Introduction to Offloading with OpenMP
Christian Terboven

Example: saxpy OpenMP

void saxpy(float a, float* x, float* vy,
int sz) {
#pragma omp target map(to:x[0:sz]) \
map(tofrom(y[0:s2])
#pragma omp parallel for simd
for (int 1 = 0; 1 < sz; i++) {
y[i] = a * x[1] + y[i];

}

clang -fopenmp --offload-arch=gfx90a

Introduction to Offloading with OpenMP
Christian Terboven

Example: saxpy OpenMP

void saxpy(float a, float* x, float* vy,
int sz) {
#pragma omp target map(to:x[0:sz]) \
map(tofrom(y[0:s2])

#pragma omp parallel for simd

for (int 1 = 0; 1N\ sz; i++) {

y[i] = a * x[1 ylil;
}

Create a team of threads to execute the loop in
parallel using SIMD instructions.

clang -fopenmp --offload-arch=gfx90a

Introduction to Offloading with OpenMP
Christian Terboven

Example: saxpy OpenMP

void saxpy(float a, float* x, float* vy,
int sz) {
#pragma omp target map(to:x[0:sz]) \
map(tofrom(y[0:s2])
#pragma omp parallel for simd
for (int 1 = 0; 1N\ sz; i++) {
y[i] = a * x[1

}

} GPUs are multi-level devices:
SIMD, threads, thread blocks

Create a team of threads to execute the loop in
parallel using SIMD instructions.

clang -fopenmp --offload-arch=gfx90a

Introduction to Offloading with OpenMP
Christian Terboven

Mapping to Hardware

Thread
§
Block

g -

Grid (Kernel)

-

Introduction to Offloading with OpenMP

Christian Terboven

Core

Multiprocessor (SM)

" instruction cache |
T eters
1111111
1111111
1111111

hardware/ software cache

Device

OpenMP

Each thread is executed
by a core

Each block is executed on
a SM

Several concurrent blocks
can reside on a SM
depending on shared
resources

Each kernel is executed
on a device

OpenMP

teams Construct

= Support multi-level parallel devices

= Syntax (C/C++):
#pragma omp teams [clause[[,] clause],..]
structured-block

= Syntax (Fortran):
!Somp teams [clause[[,] clause],..]
structured-block

= Clauses
num teams(integer-expression), thread limit(integer-
expression)
default(shared | firstprivate | private none)
private(list), firstprivate(list), shared(list),
reduction(operator:1ist)

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Multi-level Parallel saxpy

= Manual code transformation
- Tile the loop into an outer loop and an inner loop.
—> Assign the outer loop to “teams”.
—> Assign the inner loop to the “threads”.
—> (Assign the inner loop to SIMD units.)

void saxpy(float a, float* x, float* y, int sz) {
int bs = n / omp get num teams();
for (int i = 0; 1 < sz; 1 += bs) {
y[ii] = a * x[1ii] + y[ii];

}

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Multi-level Parallel saxpy

= Manual code transformation
- Tile the loop into an outer loop and an inner loop.
—> Assign the outer loop to “teams”.
—> Assign the inner loop to the “threads”.
—> (Assign the inner loop to SIMD units.)

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target teams map(to:x[0:sz]) map(tofrom:y[0:sz])
num {eams (nteams)

int bs = n / omp get num teams(); // n assumed to be multiple of
#teams
#pragma omp
for (int i = 0; 1 < sz; 1 += bs) {
#pragma omp parallel for simd firstprivate(i,bs)
for (int ii = i; ii < i + bs; ii++) {
yl[ii] = a * x[ii] + y[ii];
} } } }

Introduction to Offloading with OpenMP
Christian Terboven

Multi-level Parallel saxpy OpenMP

= For convenience, OpenMP defines composite constructs to implement
the required code transformations

void saxpy(float a, float* x, float* y, int sz) {
#pragma omp target teams parallel for \
num_ teams(num blocks) map(to:x[0:sz]) map(tofrom:y[0:sz])
for (int 1 0; 1 < sz; i++) {
yl[i] = a * x[1] + y[i];

}
}

subroutine saxpy(a, X, y, n)

!Somp omp target teams parallel do &
! Sompé& num_ teams (num blocks) map(to:x) map(tofrom:y)
do i=1,n
y(i) = a * x(i) + y(di)
end do
!Somp end target teams parallel do

end subroutine

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Optimizing Data Transfers

27 Introduction to Offloading with OpenMP
Christian Terboven

penMIP

Optimizing Data Transfers is Key to PerformanceO

Accelerators

= Connections between host and accelerator afé!
typically lower-bandwidth, higher-latency interconnects

- Bandwidth host memory: hundreds of GB/sec
—>Bandwidth accelerator memory: TB/sec
—->PCle Gen 4 bandwidth (16x): tens of GB/sec

= Unnecessary data transfers must be avoided, by
—>only transferring what is actually needed for the computation, and
—>making the lifetime of the data on the target device as long as possible.

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Role of the Presence Check

= |f map clauses are not added to target constructs, presence checks
determine if data is already available in the device data environment:

subroutine saxpy(a, X, y, nh)
use iso fortran env

— OpenMP maintains a mapping table that
records what memory pointers have been

integer :: n, 1 d
real (kind=real32) :: a Mappeda.
real (kind=real32), dimension(n) :: — Thattable also maintains the translation
X between host memory and device memory.
real(kind=real3z), dimension(n) :: _ cqnetricts with no map clause for a data
Y item then determine if data has been
ISomp target mapped and if not, amap (tofrom:..) is
do i=1,n added for that data item.
y(i) = a * x(1) + y(1)
end do

!Somp end target
end subroutine

29 INroauction 1o vtrioaaing wiin vpenwvir
Christian Terboven

OpenMP

Role of the Presence Check

= |f map clauses are not added to target constructs, presence checks
determine if data is already available in the device data environment:

subroutine saxpy(a, X, y, nh)
use iso fortran env

— OpenMP maintains a mapping table that
records what memory pointers have been

integer :: n, 1
real (kind=real32) :: a rnapped.
real (kind=real32), dimension(n) :: — Thattable also maintains the translation
X between host memory and device memory.

real (kind=real3?2 dimension(n) :: :
() (n) — Constructs with no map clause for a data

Y item then determine if data has been
mapped and if not, amap(tofrom:..) is

ISomp target“present?(y)” “present?(x)” .
do i=1,n added for that data item.
y(i) = a * x(1) + y(1)
end do

!Somp end target
end subroutine

29 INroauction 1o vtrioaaing wiin vpenwvir
Christian Terboven

OpenMP

Optimize Data Transfers

= Reduce the amount of time spent transferring data:
- Use map clauses to enforce direction of data transfer.

—->Use target data, target enter data, target exit data constructs
to keep data environment on the target device.

subroutine caller subroutine saxpy(a, X, y, n)
!Somp target data map(to:x) & !Somp target
map (tofrom:y) do i=1,n
call saxpy(a, X, y, n) y(i) = a * x(1) + y(1)
!Somp end target end do
end subroutine !Somp end target

end subroutine

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Optimize Data Transfers

= Reduce the amount of time spent transferring data:
- Use map clauses to enforce direction of data transfer.

—->Use target data, target enter data, target exit data constructs
to keep data environment on the target device.

subroutine caller subroutine saxpy(a, X, y, n)
!Somp target data map(to:x) & !Somp target “present?(y)” “present?(x)”
map (tofrom:y) do i=1,n
call saxpy(a, X, y, n) y(i) = a * x(1) + y(1)
!Somp end target end do
end subroutine !Somp end target

end subroutine

Introduction to Offloading with OpenMP
Christian Terboven

Optimize Data Transfers

OpenMP

= Reduce the amount of time spent transferring data:
- Use map clauses to enforce direction of data transfer.

—->Use target data, target enter data, target exit data constructs
to keep data environment on the target device.

void example() {
float tmp[N], data in[N], float
data out[N];
#pragma omp target data map(alloc:tmp[:N]) \
map(to:a[:N],b[:N]) \
map(tofrom:c[:N])

{
zeros (tmp, N);
compute kernel 1(tmp, a, N);
saxpy(2.0f, tmp, b, N);
compute kernel 2(tmp, b, N);
saxpy(2.0f, c, tmp, N);
L

Introduction to Offloading with OpenMP
Christian Terboven

void zeros(float* a, int n) {

#pragma omp target teams distribute parallel

for
for (int i = 0; 1 < n; i++)
a[i] = 0.0f;

}

void saxpy(float a, float* y, float* x, int
n) {
#pragma omp target teams distribute parallel
for

for (int i

= 0; 1 < n; i++)
yl[i] = a *

x[i] + y[i];

OpenMP

target data Construct Syntax

= Create scoped data environment and transfer data from the host to
the device and back

= Syntax (C/C++)
#pragma omp target data [clause[[,] clause],..]
structured-block

= Syntax (Fortran)
!Somp target data [clause[[,] clause],..]
structured-block
!Somp end target data

= Clauses
device(scalar-integer-expression)
map([{alloc | to | from | tofrom | release | delete}:]
list)
1f(scalar-expr)

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

= |ssue data transfers to or from existing data device environment
= Syntax (C/C++)
#pragma omp target update [clause[[,] clause],..]

target update Construct Syntax

= Syntax (Fortran)
!Somp target update [clause[[,] clause],..]

= Clauses
device(scalar-integer-expression)
to(list)
from(list)
1f(scalar-expr)

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Example: target data and target update

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
{
#pragma omp target device(0)
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[i] = some computation(input[i], 1);

update input array on the host(input);
#pragma omp target update device(0) to(input[:N])
#pragma omp target device(0)
#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)
res += final computation(input[i], tmp[i], 1)

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Example: target data and target update

#pragma omp target data device(0) map(alloc:tmp[:N]) map(to:input[:N)) map(from:res)
{
#pragma omp target device(0)
#pragma omp parallel for
for (i=0; i<N; i++)
tmp[i] = some computation(input[i], 1);

update input array on the host(input);
#pragma omp target update device(0) to(input[:N])
#pragma omp target device(0)
#pragma omp parallel for reduction(+:res)

for (i=0; i<N; i++)
res += final computation(input[i], tmp[i], 1)

Introduction to Offloading with OpenMP
Christian Terboven

OpenMP

Programming OpenMP

Hands-on Exercises: Jacobi on GPU

Christian Terboven RWTH
Michael Klemm Opean?

Introduction to Offloading with OpenMP
Christian Terboven

Jacobi on GPU / 1 OpenMP

During the following exercises, you will port a Jacobi solver to OpenMP. This Jacobi example solves a
finite difference discretization (5-point-stencil) of the Laplace equation (2D):

VZA(x, y) =0

using the Jacobi iterative method. To this end, the Jacobi method starts with an approximation of the
objective function f(x,y) and reuses formerly-computed matrix elements to solve the current one. It
iterates only about the inner elements of the 2D-grid so that the boundary elements are only used
within the stencil. The solving process is aborted if either a certain number of iterations is achieved
(see iter max) or the computed approximation is probably close to the solution. In this code, the
latter is evaluated by checking whether the biggest change on any matrix element (see array err and
variable err) is smaller than a given tolerance value, in the current iteration.

000000 A(i,j+1)

o { o

N B & & X N) D Data Point ®

o (o @ Boundary Point A(i-1,)) A(i,j) A(i+1,))

O O Stencil

® ‘ o A(i,j-1)

0000 8,00, j)+Ali+1,jl+Ali, j—-1+A,

ketth, I ey 4 Figure 2: Computation of matrix element

Introduction to Offloading with ! rIgule L. 9puliit Stetitt A(i,))

Christian Terboven

Jacobi on GPU / 2 OpenMP

- Task 0: You might want to acquire reference measurements on the host (wo/ GPU)...
- Task 1: Get it to the GPU: Parallelize only the one most compute-intensive loop

- Task 2: Improve the data management and the amount of parallelism on the GPU

- Task 3: Optimize that scheduling of iterations for the GPU

- Understand the performance of the host and the GPU

Introduction to Offloading with OpenMP
Christian Terboven

