
Use case: Optimizing the Weather Research and
Forecasting Model (WRF) with OpenMP Offload

and Codee

NERSC Codee Training, September 6, 2024
Namo Wichitrnithed

Oden Institute, UT Austin

NERSC
Woo-Sun Yang
Helen He

Brad Richardson

Pacific Northwest
National Laboratory
Koichi Sakaguchi

William I. Gustafson Jr.

Appentra Solutions S.L.
Manuel Arenaz
Ulises Costi Blanco

Alvaro Goldar Dieste

The Hebrew University
of Jerusalem

Jacob Shpund

The Weather Research & Forecasting Model

• An atmospheric model written in Fortran written in the 1990’s by a number
of organizations such as the National Center for Atmospheric Research
(NCAR) and the National Centers for Environmental Prediction (NCEP)

• Solves the 3D Euler equations using finite differences and explicit
timestepping

• Used in both research and operational, real-time forecasting worldwide

• NERSC development branch: https://github.com/NERSC/WRF

(NERSC-LBL) September 6, 2024 2 / 18

https://github.com/NERSC/WRF

Optimization goals

• Current parallelism: domain decomposition
(MPI) into patches (ims:ime, kms:kme,
jms:jme) and shared memory (OpenMP)
among tiles (its:ite, kts:kte, jts:jte)

• MPI + GPU approach: offloading work from
each patch to a GPU

• Programming workflow
◦ Profilers (gprof, perftools, Nsight)
◦ Static code inspection (Codee)

Figure 1: WRF decomposition layer. Image
from Dudhia, J. “WRF Modeling System
Overview”.

(NERSC-LBL) September 6, 2024 3 / 18

Fast Spectral-Bin Microphysics (FSBM)

• Particle size spectrum divided into 33 intervals (bins)

• Computations required for each particle type and size at each grid point

• Require small timesteps (5-10 s)

• Universal; can be used for different atmospheric phenomena

• Current version in WRF: FSBM-2 (Shpund et al., 2019)

Figure 2: Image from Morrison et al., 2020.

(NERSC-LBL) September 6, 2024 4 / 18

Test case setup on Perlmutter

• Conus-12km test case

◦ 425 x 300 x 50 grid

◦ One-day restart

◦ Time step: 5s

• Compilers: PrgEnv-nvidia/8.5.0 (NVHPC 23.9)

◦ nvfortran, nvc, nvc++

◦ Good GPU support for OpenMP, OpenACC, CUDA

◦ GPU flags: -mp=gpu -target-accel=nvidia80

• WRF configure option: 4 (dm+sm) PGI (pgf90/gcc)

(NERSC-LBL) September 6, 2024 5 / 18

Finding time-consuming routines with Gprof

(NERSC-LBL) September 6, 2024 6 / 18

Inside the FSBM routine

• Subroutine Fast SBM() in phys/module mp fast sbm.F coal bott new()

1 do j = jts:jte
2 do k = kts:kte
3 do i = its:ite
4 ! Collision -Coalesence process
5 call COAL_BOTT_NEW(...)
6

7 ! do stuff
8 enddo
9 enddo

10 enddo
11

12

(NERSC-LBL) September 6, 2024 7 / 18

OpenMP GPU offloading

• A set of directives for C and Fortran
that let the compiler generate GPU
code

• Can manage parallelism and data
transfer like CUDA API

• Directive-based: more portable and
easier to port existing code to GPU,
but less control

Figure 3: Image from
https://www.olcf.ornl.gov/
wp-content/uploads/2021/08/
ITOpenMP Day1.pdf

(NERSC-LBL) September 6, 2024 8 / 18

https://www.olcf.ornl.gov/wp-content/uploads/2021/08/ITOpenMP_Day1.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2021/08/ITOpenMP_Day1.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2021/08/ITOpenMP_Day1.pdf

Inside the FSBM routine

• Subroutine Fast SBM() in phys/module mp fast sbm.F

• Parallelization granularity: number of grid points, assuming no race
conditions inside coal bott new()

1 do j = jts:jte
2 do k = kts:kte
3 do i = its:ite
4 ! Collision -Coalesence process
5 call COAL_BOTT_NEW(...)
6

7 ! do stuff
8 enddo
9 enddo

10 enddo
11

12

(NERSC-LBL) September 6, 2024 9 / 18

Inside the Kernals KS subroutine

• Global collision tables, e.g. cwlg,cwls are being modified at each grid point
(i,k,j)

1 do n = 1,33
2 do m = 1,33
3 ckern_1 = ...
4 ckern_2 = ...
5 ! water - graupel
6 cwlg(m,n) = (ckern_2 + (ckern1 -ckern_2* ..)) * ...
7

8 ckern_1 = ...
9 ckern_2 = ...

10 ! water - snow
11 cwls(m,n) = (ckern_2 + (ckern1 -ckern_2* ..)) * ...
12

13 ! 18 more arrays
14

15 enddo
16 enddo
17

(NERSC-LBL) September 6, 2024 10 / 18

Setting up Codee for WRF

1 # Capture compilation flags in JSON file
2 bear -- ./ compile -j 8 wrf
3

4 # Initial screening report
5 codee screening --config compile_commands.json
6

7 # Checks report
8 codee checks --config compile_commands.json
9

10 # Example: in -place OpenMP offload insertion
11 codee rewrite --offload omp --in-place \
12 module_mp_fast_sbm.f90 :6293:4 \
13 --config compile_commands.json
14

(NERSC-LBL) September 6, 2024 11 / 18

Codee analysis of Kernals KS

• Codee implies there are no loop-carried dependencies, so the individual
entries can be computed independently

1 ! Codee: Loop modified
2 !$omp target teams distribute parallel do &
3 !$omp private(n) map(from: cwlg , cwls , ...) ...
4 do n = 1,33
5 ! Codee: Loop modified
6 !$omp simd
7 do m = 1,33
8 ckern_1 = ...
9 ckern_2 = ...

10 cwlg(m,n) = (ckern_2 + (ckern1 -ckern_2* ..)) * ...
11

12 ckern_1 = ...
13 ckern_2 = ...
14 cwls(m,n) = (ckern_2 + (ckern1 -ckern_2* ..)) * ...
15

16 ! 18 more arrays
17 enddo
18 enddo
19

(NERSC-LBL) September 6, 2024 12 / 18

Removing the global arrays

• Replace looking up m, n entry with computing as needed

1 pure real function get_cwlg(..., m, n)
2 pure real function get_cwls(..., m, n)
3

• No more shared arrays between grid points

• Speedup: around 1.4x

◦ A lot of collision types are not used in FSBM

◦ Not every entry m,n are used

(NERSC-LBL) September 6, 2024 13 / 18

Offloading the main loop

• Each grid point can now be assigned to a thread

• Further memory optimization allows a full collapse(3)

1 !$omp target teams distribute parallel do collapse (3)
2 do j = jts:jte
3 do k = kts:kte
4 do i = its:ite
5 ! Collision - Coalesence
6 call COAL_BOTT_NEW(...)
7

8 ! do stuff
9 enddo

10 enddo
11 enddo
12

(NERSC-LBL) September 6, 2024 14 / 18

Speedup results

• 10-minute runs

• 1 OpenMP thread per MPI rank

• 1 GPU per MPI rank

Routine Total speedup

coal_bott_new loop 66.6x

fast_sbm 2.99x

Overall 2.20x

(NERSC-LBL) September 6, 2024 15 / 18

Strong scaling

• No. of GPUs is fixed to 16, and no. of MPI ranks is varied from 16 to 64

(NERSC-LBL) September 6, 2024 16 / 18

Summary

• Accelerated a big part of the FSBM routine to GPUs through loop
restructuring and OpenMP device offload

◦ Codee’s dependency analysis functionality exposed independence between
computations among different grid points

• Achived an overall speedup of 2.2x for the 1 GPU per rank case for the
CONUS-12km case

• A combination of runtime profiling and static code analysis is a very helpful
aid in optimization efforts, especially for those not fully familiar with the
context of the code

(NERSC-LBL) September 6, 2024 17 / 18

QUESTIONS

(NERSC-LBL) September 6, 2024 18 / 18

