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The Weather Research & Forecasting Model

• An atmospheric model written in Fortran written in the 1990’s by a number
of organizations such as the National Center for Atmospheric Research
(NCAR) and the National Centers for Environmental Prediction (NCEP)

• Solves the 3D Euler equations using finite differences and explicit
timestepping

• Used in both research and operational, real-time forecasting worldwide

• NERSC development branch: https://github.com/NERSC/WRF
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Optimization goals

• Current parallelism: domain decomposition
(MPI) into patches (ims:ime, kms:kme,
jms:jme) and shared memory (OpenMP)
among tiles (its:ite, kts:kte, jts:jte)

• MPI + GPU approach: offloading work from
each patch to a GPU

• Programming workflow
◦ Profilers (gprof, perftools, Nsight)
◦ Static code inspection (Codee)

Figure 1: WRF decomposition layer. Image
from Dudhia, J. “WRF Modeling System
Overview”.
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Fast Spectral-Bin Microphysics (FSBM)

• Particle size spectrum divided into 33 intervals (bins)

• Computations required for each particle type and size at each grid point

• Require small timesteps (5-10 s)

• Universal; can be used for different atmospheric phenomena

• Current version in WRF: FSBM-2 (Shpund et al., 2019)

Figure 2: Image from Morrison et al., 2020.
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Test case setup on Perlmutter

• Conus-12km test case

◦ 425 x 300 x 50 grid

◦ One-day restart

◦ Time step: 5s

• Compilers: PrgEnv-nvidia/8.5.0 (NVHPC 23.9)

◦ nvfortran, nvc, nvc++

◦ Good GPU support for OpenMP, OpenACC, CUDA

◦ GPU flags: -mp=gpu -target-accel=nvidia80

• WRF configure option: 4 (dm+sm) PGI (pgf90/gcc)
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Finding time-consuming routines with Gprof
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Inside the FSBM routine

• Subroutine Fast SBM() in phys/module mp fast sbm.F coal bott new()

1 do j = jts:jte
2 do k = kts:kte
3 do i = its:ite
4 ! Collision -Coalesence process
5 call COAL_BOTT_NEW(...)
6

7 ! do stuff
8 enddo
9 enddo

10 enddo
11

12
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OpenMP GPU offloading

• A set of directives for C and Fortran
that let the compiler generate GPU
code

• Can manage parallelism and data
transfer like CUDA API

• Directive-based: more portable and
easier to port existing code to GPU,
but less control

Figure 3: Image from
https://www.olcf.ornl.gov/
wp-content/uploads/2021/08/
ITOpenMP Day1.pdf
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Inside the FSBM routine

• Subroutine Fast SBM() in phys/module mp fast sbm.F

• Parallelization granularity: number of grid points, assuming no race
conditions inside coal bott new()

1 do j = jts:jte
2 do k = kts:kte
3 do i = its:ite
4 ! Collision -Coalesence process
5 call COAL_BOTT_NEW(...)
6

7 ! do stuff
8 enddo
9 enddo

10 enddo
11

12
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Inside the Kernals KS subroutine

• Global collision tables, e.g. cwlg,cwls are being modified at each grid point
(i,k,j)

1 do n = 1,33
2 do m = 1,33
3 ckern_1 = ...
4 ckern_2 = ...
5 ! water - graupel
6 cwlg(m,n) = (ckern_2 + (ckern1 -ckern_2* ..)) * ...
7

8 ckern_1 = ...
9 ckern_2 = ...

10 ! water - snow
11 cwls(m,n) = (ckern_2 + (ckern1 -ckern_2* ..)) * ...
12

13 ! 18 more arrays
14

15 enddo
16 enddo
17
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Setting up Codee for WRF

1 # Capture compilation flags in JSON file
2 bear -- ./ compile -j 8 wrf
3

4 # Initial screening report
5 codee screening --config compile_commands.json
6

7 # Checks report
8 codee checks --config compile_commands.json
9

10 # Example: in -place OpenMP offload insertion
11 codee rewrite --offload omp --in-place \
12 module_mp_fast_sbm.f90 :6293:4 \
13 --config compile_commands.json
14
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Codee analysis of Kernals KS

• Codee implies there are no loop-carried dependencies, so the individual
entries can be computed independently

1 ! Codee: Loop modified
2 !$omp target teams distribute parallel do &
3 !$omp private(n) map(from: cwlg , cwls , ...) ...
4 do n = 1,33
5 ! Codee: Loop modified
6 !$omp simd
7 do m = 1,33
8 ckern_1 = ...
9 ckern_2 = ...

10 cwlg(m,n) = (ckern_2 + (ckern1 -ckern_2* ..)) * ...
11

12 ckern_1 = ...
13 ckern_2 = ...
14 cwls(m,n) = (ckern_2 + (ckern1 -ckern_2* ..)) * ...
15

16 ! 18 more arrays
17 enddo
18 enddo
19
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Removing the global arrays

• Replace looking up m, n entry with computing as needed

1 pure real function get_cwlg(..., m, n)
2 pure real function get_cwls(..., m, n)
3

• No more shared arrays between grid points

• Speedup: around 1.4x

◦ A lot of collision types are not used in FSBM

◦ Not every entry m,n are used
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Offloading the main loop

• Each grid point can now be assigned to a thread

• Further memory optimization allows a full collapse(3)

1 !$omp target teams distribute parallel do collapse (3)
2 do j = jts:jte
3 do k = kts:kte
4 do i = its:ite
5 ! Collision - Coalesence
6 call COAL_BOTT_NEW(...)
7

8 ! do stuff
9 enddo

10 enddo
11 enddo
12
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Speedup results

• 10-minute runs

• 1 OpenMP thread per MPI rank

• 1 GPU per MPI rank

Routine Total speedup

coal_bott_new loop 66.6x

fast_sbm 2.99x

Overall 2.20x
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Strong scaling

• No. of GPUs is fixed to 16, and no. of MPI ranks is varied from 16 to 64
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Summary

• Accelerated a big part of the FSBM routine to GPUs through loop
restructuring and OpenMP device offload

◦ Codee’s dependency analysis functionality exposed independence between
computations among different grid points

• Achived an overall speedup of 2.2x for the 1 GPU per rank case for the
CONUS-12km case

• A combination of runtime profiling and static code analysis is a very helpful
aid in optimization efforts, especially for those not fully familiar with the
context of the code
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QUESTIONS

(NERSC-LBL) September 6, 2024 18 / 18


