Debugging and Optimizing parallel codes with Linaro Forge

Rudy Shand Field Application Engineer

Agenda

- 10 minute introduction
- 45 minute DDT lecture
- 45 minute DDT hands-on
- 20 minute break
- 45 minute MAP and Performance Reports lecture
- 45 minute MAP and Performance Reports hands-on

Linaro Forge: Where Most of Top Supercomputers turn for Performance Excellence

Build reliable and optimized code on multiple Server and HPC architectures

Linaro Forge

An interoperable toolkit for debugging and profiling

- The de-facto standard for HPC development
 - Most widely-used debugging and profiling suite in HPC
 - Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging and profiling capabilities

- Powerful and in-depth error detection mechanisms (including memory debugging)
- Sampling-based profiler to identify and understand bottlenecks
- Available at any scale (from serial to exascale applications)

Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

Supported Platforms

Bug classification

- Crashes
 - One or more processes in application terminates
 - Most common and generally easiest to solve

- Hangs
 - Deadlocks Stuck waiting for something that never happens
 - Livelocks Making local progress, but no global progress
- Race conditions
 - One or more threads accessing the same data at the same time in non deterministic way
 - Shows up as incorrect answer or sometimes crashes

DDT UI

- 1 Process controls
- 2 Process groups
- 3 Source Code view
- 4 Variables
- 5 Evaluate window
- 6 Parallel Stack
- 7 Project files
- 8 Find a file or function

Linaro DDT Debugger Highlights

current state and identify the source of the error.

bounds

test.anotherList.s

beingWatched = 0:

test.c = 'p';

Core files

You can open and debug one or more core files generated by your application.

Procedure

1. On the Welcome page click Open Core Files . The Open Core Files window opens.

2. Select an executable and a set of core files, then click **OK** to open the core files and start debugging them.

Note

While Linaro DDT is in this mode, you cannot play, pause, or step, because there is no process active. You are, however, able to evaluate expressions and browse the variables and stack frames saved in the core files.

- View core files for CPU's
- View core files for GPU's

Memory debugging menu in Linaro DDT

Run	
Run: srun -n 8 ./mmult2_c.exe	Details
Command: srun -n 8 ./mmult2_c.exe	
□ OpenMP	
CUDA: Track allocations: enabled, Detect invalid accesses: disabled	Details
✓ Track GPU allocations (also enables CPU memory debugging)	
Detect invalid accesses (memcheck)	
✓ Memory Debugging: Fast, 1 guard page after, Backtraces, Preload	Details
Plugins: none	Details
Help Options	<u>R</u> un Quit

When manual linking is used, untick "Preload" box

Program Stopped

Processes 0-3:

Memory error detected in main (leaky.c:60):

over node memory threshold limit

Exemplar node: u101462-vm1 (process 0)

 Preload the men 	nory debugging library Lang	Jage: Recomn	nended
Note: Preloading or program is statically manually. Heap Debugging	nly works for programs linked y linked, you must relink it ag	against shared ainst the dmallo	libraries. If yo oc library
Fast	Balanced	Thoroug	h Custor
Enabled Checks:	basic	M	ore Informatio
<u>Add guard pag</u> <u>Guard pages:</u> 1	ges to detect out of bounds he	ap access	
<u>A</u> dd guard pag Guard pages: 1 Advanced	es to detect out of bounds he	ap access	
<u>A</u> dd guard pag <u>G</u> uard pages: 1	pes to detect out of bounds h Add guard pages: 7 hory threshold at 90 2 p	aap access ifter	
<u>A</u> dd guard pag <u>G</u> uard pages: 1 Advanced Set node mem <u>C</u> heck heap co	pes to detect out of bounds h	ap access fter	ıs
<u>A</u> dd guard pages: <u>J</u> <u>G</u> uard pages: <u>J</u> <u>Advanced</u> <u>Set node mem</u> <u>Check heap cc</u> <u>V</u> Store stack <u>ba</u>	pes to detect out of bounds he detect out of bounds he add guard pages: 7 hory threshold at <u>90</u> p prisistency every <u>100</u> c cktraces for memory allocatio	ap access (ter v)	ıs
Add guard pag Guard pages: 1 Advanced Set node mem Check heap co Store stack ba Only enable for	hory threshold at <u>00</u> p ponsistency every <u>100</u> c cktraces for memory allocation r these processes:	ap access fiter	15

Multi-dimensional Array Viewer

What does your data look like at runtime?

View arrays

- On a single process
- Or distributed on many ranks

Use metavariables to browse the array

- Example: \$i and \$j
- Metavariables are unrelated to the variables in your program
- The bounds to view can be specified
- Visualise draws a 3D representation of the array

Data can also be filtered

• "Only show if": \$value>0 for example \$value being a specific element of the array

					Multi-I	Dimens	sional	l Arr	ay Vi	iewei	ŕ		×
<u>A</u> rray Ex	pressio	n: ta	bles[\$i][\$j]							¥	<u>E</u> valuate
Distributed Array Dimensions: None 💌 How do I view distributed arrays?									Cancel				
Staggered Array What does this do?										Align Stack Frames			
Range of \$i Range of \$j									1				Auto- <u>u</u> pdate
From:	0			-	From:	0		-					
To:	11		-	•	To:	11		Ð					
Display	vr Boy	NC			- Display:	Colum	ns						
<u>P</u> up/d					Endoundy.	conam		•					
Only:	show if							See E	xam	oles			
Data Ta	a <u>b</u> le	<u>S</u> tati	stics										
🚽 G	ioto	🧼 V	/isuali	ze	💾 Ехр	ort 🚦	🔄 Full	Wind	low				
	j												
	0	1	2	3	4 5	6	7	8	9	10	11		
10	1	2	3	4	5	6 7	8	9	10	11	12		
1	2	4	6	12	10 1	.2 14	16	18	20	22	24		
3	3	0	12	12	20								
4	- 4	10	15	20	25								
5	6	12	18	24	30							900	
6	7	14	21	28	35								
7	8	16	24	32	40					_			
8	9	18	27	36	45					S.		4	
9	10	20	30	40	50					9		11	
10	11	22	33	44	55			45	, i		illin.		
										-			Million
<u>H</u> elp												-	N45 column

DDT: Production-scale debugging

Isolate and investigate faults at scale

Who misbehaved?

- Merge stacks from processes and threads
- Sparklines comparing data across processes
- Which MPI rank

Where is the problem?

- Integrated source code editor
- Dynamic data structure visualization

How did it happen?

- Parse diagnostic messages
- Trace variables through execution

Why did it happen?

- Unique "Smart Highlighting"
- Experiment with variable values

Python Debugging

- Debug Features
 - Sparklines for Python variables
 - Tracepoints
 - MDA viewer
 - Mixed language support
- Improved Evaluations:
 - Matrix objects
 - Array objects
 - Pandas DataFrame
 - · Series objects
- Python Specific:
 - Stop on uncaught Python exception
 - Show F-string variables
 - Mpi4py, NumPy, SciPy

••							Lin	aro DDT	- Linaro	Forge	23.1						
•		•	. .,	.	R	.	L î										
Curr	ent Group:	All	C	Focus	on current:	🗿 Group	Process	s 🔵 Thre	ead								
All			C) 1	2 3	4 5	6 7										
Crea	te Group																
×ø	Project F	iles		mmult.											Locals	Current Line(s)	Current Stack
	(0014)	•	12	4	if mr ==										×e	Loca	ls
Searci	n (#K)	- ~					yle_array	_order:							Name		Value
					1	mat_a = n	umpy.ndar umpy.ndar	ray(sha	ape=(sz,	sz),	dtype	='d', (order='l	2') 2')	> comm		mpi4py
、 💼	lemr ny				1	$mat_c = n$	umpy.ndar umpy.ndar	ray(sha	ape=(sz)	sz),	, dtype	='a', a	order=']	: / E')	filenar	ne	"res_Pv
(🚆	Isini.py														fortrar	n style arrav	E False
′ थ	isqr.py					mat_a = n	umpy.ndar	ray(sha	ipe=(sz	sz),	dtype=	'd', o:	rder='C)		omm	Interco
					1	mat_b = n	umpy.ndar umpy.ndar	ray(sha	ape=(sz'	SZ),	dtype=	'a', o: 'a' o:	rder='C	·)	kernel		"C"
2 💆	Izma.py						ampyindar		.pc (52	5277	acype	~ / 0.	LUCI U		> mat a		numpu
> 🖻	machinery.	ру	0 13	4		t("{}:]In	itializir	ng matri	lces'	.form	nat(mr))			/ mat h		ndarray
> 💀	main.py				mini	t(sz, for	tran_styl	le_array	_order,		_a)				v mat_b		ndarray
> 💀	matfuncs.p	y			mini	t(sz, ior	tran_styl	le_array	_order,	mat_	_d_ _(d_				[0]		0.0
> 💀	matfuncs.p	y				C(32, IOI	cran_scy	re_array	_order,	inac_					[10	00]	
						t("{}: Se	nding mat	rices".		(mr))					[10	0]	0.0
						i in rang	e(1, npro								[10	1]	0.0
			14			f Get a s	lice from	n the ma	it_a and	1 mat_					[10	2]	0.0
						nat a	n_styre_a slice =	mat c[:	aer: . i*msl	lice 1	r:(i+1)	*mslice	e rl		[10	3]	0.0
5 🗖	memman r	w.		4		mat c	slice =	mat c[:	, i*msl	lice 1	c:(i+1)	*mslice	e]				
_ <u>_</u>		'' —	-14	5		, –	_	_		_			_				
Input	/Output E	reakpoi	ints W	/atchpoin	ts Stacks	(All) Tra	cepoints	Tracepo	int Outpu	it 🖡 Lo	gbook 🛔	×ø		_		Evaluate	
×ø					Sta	acks (All)						Name	Valu	e			
Proce	sses Fund	tion			<u>^ </u>			_	_			msl	lice	512			
1	✓ <n< p=""></n<>	nodule>	(allinea	ddt tra	ce.pv:155)							non	oc 📃	8			
1	× 1	nain (all	linea_dc	t_trace.p	y:140)												
1	~	<modu< th=""><th>ıle> (mn</th><th>nult.py:21</th><th>5)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></modu<>	ıle> (mn	nult.py:21	5)												
1		main	(mmult	.py:134 <u>)</u>													
_		_	_														

Debugging Nvidia GPUs Using Linaro DDT

Debug code simultaneously on Nvidia Ampere GPUs

Controlling the GPU execution:

- All active threads in a warp will execute in lockstep. Therefore, DDT will step 32 threads at a time.
- Play/Continue runs all GPU threads
- Pause will pause a running kernel

Key (additional) GPU features:

- Kernel Progress View
- GPU thread in parallel stack view
- GPU Thread Selector
- GPU Device Pane

For NVIDIA's nvcc compiler, kernels must be compiled with the -g and -G flags

Run DDT in offline mode

Run the application under DDT and halt or report when a failure occurs

You can run the debugger in non-interactive mode

- For long-running jobs / debugging at very high scale
- For automated testing, continuous integration...

To do so, use following arguments:

- \$ ddt --offline --output=report.html srun ./jacobi_omp_mpi_gnu.exe
 - --offline enable non-interactive debugging
 - --output specifies the name and output of the non-interactive debugging session
 - Html
 - Txt
 - Add --mem-debug to enable memory debugging and memory leak detection

Report output

12	0	0:08.188	0-3	Process s	stopped a	at breakpoint in update (wave.c:216).				
13				Additional	I Informa	tion				
				Processe	s Threads	Function	Source		Variables	
			1	0-3	4	main (wave.c:334)	<pre>iterations = update(left, right)</pre>	Bank Ø.	thread 1	
				0-3	4	update (wave.c:216)	<pre>values[j] = newval[j];</pre>	▼ Rank Ø,	thread 1	
								Name	Value	
								i	0	
								iteration	ns — 1	
								j	101	
								left		
								now	<aggregate value=""></aggregate>	
								right	1 (from -2 to 3)	
									stop	— 0
				0-3	8	progress_engine				
				0-3	8	opal_libevent2022_event_base_loop (event.c:1630)		► Rank Ø,	thread 2	
				0-3	4	<pre>poll_dispatch (poll.c:165)</pre>		► Rank Ø,	thread 2	
				0-3	4	poll				
				0-3	4	epoll_dispatch (epoll.c:407)		▶ Rank 0,	thread 3	
				0-3	4	epoll_wait				
				Curren ▼ Evalua Name 3*j*j — j —	t Stack tte Value - 30603 - 101					
14		0:11.009	0-3	Play						

9 Step Guide

Optimizing high performance applications

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.

This pragmatic, 9 Step best practice guide, will help you identify and focus on application readiness, bottlenecks and optimizations one step at a time.

Cores

 Discover synchronization overhead and core utilization

 Synchronization-heavy code and implicit barriers are revealed

Vectorization

- Understand numerical intensity and vectorization level.
- Hot loops, unvectorized code and GPU performance reveleaed

Memory

- Reveal lines of code bottlenecked by memory access times.
- Trace allocation and use of hot data structure

Communication

Track communication performance.

Verification

Validate corrections and

optimal performance

 Discover which communication calls are slow and why.

Bugs

Correct application

Analyze before you optimize

Measure all performance aspects.
 You can't fix what you can't see.
 Prefer real workloads over artificial tests.

I/O

 Discover lines of code spending a long time in I/O.

 Trace and debug slow access patterns.

Workloads

- Detect issues with balance.
- Slow communication calls and processes.
 Dive into partitioning code.

Key : O Linar

Linaro Performance Reports

Characterize and understand the performance of HPC application runs

Commercially supported

by Linaro

- Gather a rich set of data
 - Analyses metric around CPU, memory, IO, hardware counters, etc.
 - Possibility for users to add their own metrics

Accurate and

Astute insight

Build a culture of application performance & efficiency awareness

- Analyses data and reports the information that matters to users
- Provides simple guidance to help improve workloads' efficiency

Relevant advice to avoid pitfalls

Adds value to typical users' workflows

- Define application behaviour and performance expectations
- Integrate outputs to various systems for validation (eg. continuous integration)
 - Can be automated completely (no user intervention)

Linaro Performance Reports

A high-level view of application performance with "plain English" insights

Command:	srun -host node-1, node-2 -map-by socket –n 16 –ppn 8 ./Bin/low_freq///Src//hydro –i ./Bin/low_freq////Input/input_250x125_corner.nml	I/O A breakdown of the 16.2	% I/O time:
Resources:	2 nodes (8 physical, 8 logical cores per node)	Time in reads	0.0%
Tasks:	16 processes, OMP_NUM_THREADS was 1	Time in writes	100.0%
Machine: Start time:	node-1 Thu lul 9 2015 10:32:13	Effective process read rate	0.00 bytes/s
Total time: Full path:	165 seconds (about 3 minutes) Bin//Src	Effective process write rate	1.38 MB/s
		Most of the time is spent in effective transfer rate. This	write operations with a very low may be caused by contention for the

Summary: hydro is MPI-bound in this configuration filesystem or inefficient access patterns. Use an I/O profiler to investigate which write calls are affected.

Time spent running application code. High values are usually good. This is **very low**; focus on improving MPI or I/O performance first

Time spent in MPI calls. High values are usually bad. This is **high**; check the MPI breakdown for advice on reducing it

Time spent in filesystem I/O. High values are usually bad.

This is **average**; check the I/O breakdown section for optimization advice

Linaro Performance Reports Metrics

Lowers expertise requirements by explaining everything in detail right in the report

Performance Improvement

© 2008–2018 by the MIT 6.172 Lecturers

...to test and measure many different implementations

code,

Loop order (outer to inner)	Running time (s)
i, j, k	1155.77
i, k, j	177.68
j, i, k	1080.61
j, k, i	3056.63
k, i, j	179.21
k, j, i	3032.82

Linaro MAP Source Code Profiler Highlights

MAP Capabilities

MAP is a sampling based scalable profiler

- Built on same framework as DDT
- Parallel support for MPI, OpenMP, CUDA
- Designed for C/C++/Fortran

Designed for 'hot-spot' analysis

- Stack traces
- Augmented with performance metrics

Adaptive sampling rate

- Throws data away 1,000 samples per process
- Low overhead, scalable and small file size

07:59:11-08:05:59 (408.109s): Main thread compute 2.0 %, OpenMP 60.7 %, MPI 19.1 %, File I/O 8.6 %, Synchronisation 0.0 %, OpenMP overhead

T hydro.590 X 51 CALL timestep() 18.13 52 CALL timestep() 53 CALL bill pdf(mpm b)	
51 18.1%52 CALL timestep() 53 54 CALL timestep()	
18.1% 52 CALL timestep()	
53 54 CALL D4U/ (DUE)	
7.03 CALL POV(.TROE.)	
3.1% CALL accelerate()	
5.0% CALL PdV(.FALSE.)	
2.68 60 CALL flux calc()	
61	
Input/Output Project Files OpenMP Stacks OpenMP Regions Functions	
OpenMP Stacks	
Total core time A MPI Overhead Function(s) on line Source	
🖻 😵 clover_leaf [program]	
i ≠ clover_leaf CALL clover_init	t_comms()
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
39.7% module::advection CALL advection (1
18.1% stimestep_module::timestep CALL timestep()	
7.0% 0.7% P Cycles per instruction 0.90	and the second s
7.0% C.1% BV 7.5	. (
3.1% (0.1% B) 0.05	
2.6% <0.1%	······
<0.1% 51.5 G /s	
Showing data from 32,000 samples taken over 32 processes (10 g7 7	
Instructions in advanced	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
61.5 G /s	
12 Cache Accesses	
L2 Cache Accesses	a the fait of the second s
L2 Cache Accesses	e forste en forste en son de services de la son de la service de la service de la service de la service de la s La service de la service de
L2 Cache Accesses 680 379 M /s L2 Cache Misses 276	e geli i kan se kara s Na se kara se k

GPU Profiling

Profile

- Supports both AMD and Nvidia GPUs
- Able to bring up metadata of the profile
- Mixed CPU [green] / GPU [purple] application
- CPU time waiting for GPU Kernels [purple]
- GPU Kernels graph indicating Kernel activity

GUI information

- GUI is consistent across platforms
- Zoom into main thread activity
- Ranked by highest contributors to app time

Python Profiling

19.0 adds support for Python

- Call stacks
- Time in interpreter

Works with MPI4PY

• Usual MAP metrics

Source code view

• Mixed language support

Note: Green as operation is on numpy array, so backed by C routine, not — Python (which would be pink)

map --profile srun -n 2 python ./diffusion-fv-2d.py

Toggle percentage-time and core-time in MAP

Use for direct comparisons between runs at the same scale (process/core counts).

- Easily determine if a change has made a portion of code faster, slower, or largely unchanged.
- Performance report automatically includes both percentage-time and core time
- Core-time is an estimation, but should be very close to the application run time

Libraries tab in MAP

- List time spent in shared libraries (left)
- List entry point functions into the selected library (right)

Input/Output	Project Files	Main Thread	Stacks	Functions	GPU Kernels	Libraries						
Libraries												6 ×
Self time		 Total 	Child	Library			Total core time	-	MPI	Overhead	Function	
47.996 26.5% 15.5% 8.5% 1.5% 0.1% <0.1%		47.9% 74.3% 15.5% 100.0% 1.7% <0.1% <0.1% 76.0%	47.8% 6 91.5% 0.2% <0.1% 76.0%	libc-2.31.so libhsa-runtir [mpi] mixed-cpu-ç libamd_com libpthread-2 libstdc++.so libamdhip64	ne64.so.1.5.5010 gpu ngr.so.2.4.50100 .31.so .6.0.29 4.so.5.1.50100	0	47.7%				iocti munmap _int_free malloc memmove_avx_unaligned_erms memcmp_avx2_movbe	

Use to identify the libraries that would benefit the most from optimisation or replacement (e.g. alternative maths library or memory management implementation).

Hardware Performance Metrics

MAP uses perf or PAPI to gather data

On x86 MAP reports on instruction mix

- CPU, vectorization, memory, etc
- Linaro are researching ways to provide the same

Instruction activity via perf

- Harder to read / action
- Raw rates presented not interpolated

Welcome your feedback to improve this

MAP Thread Affinity Advisor

Snapshot Selector

Change at which point of a run the Affinity data is shown (*Library Load*, *Initialisation*, *Finalization*).

rudy.shand@linaro.org support@forge.linaro.com Go to www.linaroforge.com

linaro**forge**