
Debugging and Optimizing
parallel codes with Linaro Forge

Rudy Shand
Field Application Engineer

Agenda
• 10 minute introduction
• 45 minute DDT lecture
• 45 minute DDT hands-on
• 20 minute break
• 45 minute MAP and Performance Reports lecture
• 45 minute MAP and Performance Reports hands-on

Linaro Forge: Where Most of Top Supercomputers  
turn for Performance Excellence
Build reliable and optimized code on multiple Server and HPC architectures

Linaro DDT

Market leading, simple to use
HPC debugger for C/C++,

Fortran and Python
applications.

Linaro MAP

Effortless performance
analysis for experts and

novices alike.

Linaro
Performance Reports

At a glance, single-page,
application performance

summary.

Linaro Forge combines

Performance
Engineering for

any architecture,
at any scale

Linaro Forge

The de-facto standard for HPC development
● Most widely-used debugging and profiling suite in HPC
● Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging and profiling capabilities
● Powerful and in-depth error detection mechanisms (including memory debugging)
● Sampling-based profiler to identify and understand bottlenecks
● Available at any scale (from serial to exascale applications)

Easy to use by everyone
● Unique capabilities to simplify remote interactive sessions
● Innovative approach to present quintessential information to users

An interoperable toolkit for debugging and profiling

DistromacOS Windows

Intel (x86-64) arm (aarch64)

RHEL 7+ SLES 15 Ubuntu 20.04+

Open MPI MPICH IBM Spectrum MPIHPE MPIIntel MPI …

CPU Architecture

GPU Accelerator

GCCACfLCCE NVHPC IBM XLIntel Compiler ROCm Compiler

MPISlurm PALS

Python

AMD ROCm NVIDIA CUDA Intel Xe-HPC

AMD (x86-64)

Supported Platforms

Bug classification

● Crashes
● One or more processes in application terminates
● Most common and generally easiest to solve  

● Hangs
● Deadlocks - Stuck waiting for something that never happens
● Livelocks - Making local progress, but no global progress 

● Race conditions
● One or more threads accessing the same data at the same time in non deterministic way
● Shows up as incorrect answer or sometimes crashes

DDT UI

● 1 Process controls
● 2 Process groups
● 3 Source Code view
● 4 Variables
● 5 Evaluate window
● 6 Parallel Stack
● 7 Project files
● 8 Find a file or

function

Linaro DDT Debugger Highlights

The scalable print alternative Stop on variable change Static analysis warnings on
code errors

Detect read/write beyond array
bounds

Detect stale memory
allocations

Linaro DDT Debugger Highlights

● View core files for CPU’s
● View core files for GPU’s

Core files

Memory debugging menu in Linaro DDT

When manual linking is used,
untick “Preload” box

srun -n 8 ./mmult2_c.exe

srun -n 8 ./mmult2_c.exe

Multi-dimensional Array Viewer
What does your data look like at runtime?

View arrays
● On a single process
● Or distributed on many ranks

Use metavariables to browse the array
● Example: $i and $j
● Metavariables are unrelated to the variables in your program
● The bounds to view can be specified
● Visualise draws a 3D representation of the array

Data can also be filtered
● “Only show if”: $value>0 for example $value being a specific

element of the array

DDT: Production-scale debugging
Isolate and investigate faults at scale

Who misbehaved?
● Merge stacks from processes and threads
● Sparklines comparing data across processes
● Which MPI rank

Where is the problem?
● Integrated source code editor
● Dynamic data structure visualization

How did it happen?
● Parse diagnostic messages
● Trace variables through execution

Why did it happen?
● Unique “Smart Highlighting”
● Experiment with variable values

• Debug Features
• Sparklines for Python variables
• Tracepoints
• MDA viewer
• Mixed language support 

• Improved Evaluations:
• Matrix objects
• Array objects
• Pandas DataFrame
• Series objects 

• Python Specific:
• Stop on uncaught Python exception
• Show F-string variables
• Mpi4py, NumPy, SciPy

ddt --connect srun -n 8 python3
%allinea_python_debug% ./mmult.py

Python Debugging

Debugging Nvidia GPUs

Debug code simultaneously on Nvidia Ampere
GPUs

Controlling the GPU execution:
● All active threads in a warp will execute in lockstep.

Therefore, DDT will step 32 threads at a time.
● Play/Continue runs all GPU threads
● Pause will pause a running kernel 

Key (additional) GPU features:
● Kernel Progress View
● GPU thread in parallel stack view
● GPU Thread Selector
● GPU Device Pane  

For NVIDIA’s nvcc compiler, kernels must be
compiled with the -g and -G flags 

Using Linaro DDT

Run DDT in offline mode

You can run the debugger in non-interactive mode
● For long-running jobs / debugging at very high scale
● For automated testing, continuous integration…

To do so, use following arguments:
● $ ddt --offline --output=report.html srun ./jacobi_omp_mpi_gnu.exe

○ --offline enable non-interactive debugging
○ --output specifies the name and output of the non-interactive debugging session

● Html
● Txt

○ Add --mem-debug to enable memory debugging and memory leak detection

ddt --offline -o jacobi_omp_mpi_gnu_debug.txt \

 --trace-at _jacobi.F90:83,residual \

 srun ./jacobi_omp_mpi_gnu.exe

Run the application under DDT and halt or report when a failure occurs

Report output

Bugs
Correct application

Analyze before you optimize
Measure all performance aspects.
You can’t fix what you can’t see.
Prefer real workloads over artificial tests.

I/O
Discover lines of code
spending a long time in I/O.
Trace and debug slow access
patterns.

Workloads
Detect issues with balance.
Slow communication calls and
processes.
Dive into partitioning code.

Communication
Track communication performance.

Discover which communication calls
are slow and why.

Memory
Reveal lines of code bottlenecked by
memory access times.
Trace allocation and use of hot data
structure

Cores
Discover synchronization
overhead and core utilization
Synchronization-heavy code and
implicit barriers are revealed

Vectorization
Understand numerical intensity
and vectorization level.
Hot loops, unvectorized code and
GPU performance reveleaed

Verification
Validate corrections and
optimal performance9 Step Guide

Optimizing high performance applications

Improving the efficiency of your parallel
software holds the key to solving more
complex research problems faster.

This pragmatic, 9 Step best practice guide,
will help you identify and focus on
application readiness, bottlenecks and
optimizations one step at a time.

Key : Linaro Forge 
Linaro Performance Reports

Linaro Performance Reports

Gather a rich set of data
● Analyses metric around CPU, memory, IO, hardware counters, etc.
● Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
● Analyses data and reports the information that matters to users
● Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
● Define application behaviour and performance expectations
● Integrate outputs to various systems for validation (eg. continuous integration)
● Can be automated completely (no user intervention)

Characterize and understand the performance of HPC application runs

Relevant advice  
to avoid pitfalls

Accurate and
Astute insight

Commercially supported
by Linaro

Linaro Performance Reports
A high-level view of application performance with “plain English” insights

 srun -host node-1, node-2 -map-by

Linaro Performance Reports Metrics
Lowers expertise requirements by explaining everything in detail right in the report

Multi-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency
System
usage

Performance Improvement

© 2008–2018 by the MIT 6.172 Lecturers

i, j, k
i, j, k

i, k, j
i, k, j

Linaro MAP Source Code Profiler Highlights

Find the peak memory use Fix an MPI imbalance Remove I?O bottleneck

Improve memory access Restructure for vectorizationMake sure OpenMP regions
make sense

MAP is a sampling based scalable profiler
● Built on same framework as DDT
● Parallel support for MPI, OpenMP, CUDA
● Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis
● Stack traces
● Augmented with performance metrics

Adaptive sampling rate
● Throws data away - 1,000 samples per process
● Low overhead, scalable and small file size

MAP Capabilities

GPU Profiling
Profile
● Supports both AMD and Nvidia GPUs
● Able to bring up metadata of the profile
● Mixed CPU [green] / GPU [purple] application
● CPU time waiting for GPU Kernels [purple]
● GPU Kernels graph indicating Kernel activity

 
GUI information
● GUI is consistent across platforms
● Zoom into main thread activity
● Ranked by highest contributors to app time

Python Profiling
19.0 adds support for Python
● Call stacks
● Time in interpreter

Works with MPI4PY
● Usual MAP metrics

Source code view
● Mixed language support

map --profile srun -n 2 python ./diffusion-fv-2d.py

Note: Green as operation is on numpy
array, so backed by C routine, not
Python (which would be pink)

Toggle percentage-time and core-time in MAP
Use for direct comparisons between runs at
the same scale (process/core counts).

● Easily determine if a change has made a
portion of code faster, slower, or largely
unchanged. 

● Performance report automatically includes
both percentage-time and core time  

● Core-time is an estimation, but should be
very close to the application run time

Libraries tab in MAP

● List time spent in shared libraries (left)
● List entry point functions into the selected library (right)

Use to identify the libraries that would benefit the most from optimisation or replacement
(e.g. alternative maths library or memory management implementation).

Hardware Performance Metrics
MAP uses perf or PAPI to gather data

On x86 MAP reports on instruction mix
● CPU, vectorization, memory, etc
● Linaro are researching ways to provide the same

Instruction activity via perf
● Harder to read / action
● Raw rates presented - not interpolated

 
Welcome your feedback to improve this

MAP Thread Affinity Advisor

Process-specific env vars
List of Environment Variables which
might affect the affinity of a given rank.

Global (launcher) environment variables
List of Environment Variables which were
set at launch which might be relevant to
how threads are distributed.

Snapshot Selector
Change at which point of a run the Affinity data is
shown (Library Load, Initialisation, Finalization).

Commentary
A list of commentary, providing information and
advice on Memory Imbalance, Core Utilization etc.

Exemplar Nodes
Selectable list of exemplars,
allowing ability to switch data
between nodes of a run. Nodes
with similar affinity/structures are
merged.

Processes List
List of processes (by MPI rank) of
the selected exemplar. Shows the
key for the node topology diagram
and selecting one shows all threads
for the process.

Threads List
List of all threads for the selected
process. Selecting threads
highlights which cores they are
bound to in the topology view.

Thank you
rudy.shand@linaro.org 

support@forge.linaro.com 
Go to www.linaroforge.com

mailto:rudy.shand@linaro.org
mailto:support@forge.linaro.com

