NERSCPowering Scientific Discovery for 50 Years

Science News

Powerful Computers Advance Fusion Research at the Princeton Plasma Physics Laboratory

September 18, 1998

Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) report a major advance in the computer modeling of fusion plasmas in the September 18 edition of Science magazine. The new results were obtained utilizing the massively parallel processing (MPP) capabilities of the DOE's National Energy Research Scientific Computing Center (NERSC) at the Lawrence Berkeley National Laboratory in Berkeley, California. Read More »

Did the Big Bang Come With Strings Attached?

June 30, 1998

The power of supercomputers at the National Energy Research Scientific Computing Center (NERSC) has enabled Julian Borrill of the Department of Energy’s Lawrence Berkeley National Laboratory to model, in striking detail, a possible state of the universe only a hundred billionth of a trillionth of a trillionth of a second after the Big Bang. Read More »

Quantum Dot Simulations From T3E Make Journal Cover

January 30, 1998

Results of million-atom Quantum Dot simulations performed on the Cray T3E at NERSC by Alex Zunger's group at the National Renewable Energy Laboratory in Golden, Colo., will appear on the cover of the February issue of the Materials Research Society Bulletin. Read More »

Berkeley Researchers Eliminate One Theory in Mystery of Missing Xenon, but Find New Clues About Element's Behavior

September 25, 1997

Scientists at Ernest Orlando Lawrence Berkeley National Laboratory and the University of California, Berkeley, looking into the "mystery of the missing xenon" have found strong evidence against one leading theory and, along the way, discovered new information about the behavior of the element. Read More »

Protein Dynamics and Biocatalysis

Investigators: P. A. Bash, Northwestern University Medical School and M. Karplus, Harvard University Research Objectives A guiding principle of molecular biology is that the structure of a biomolecule defines its function. This principle is especially true in the case of the protein molecules known as enzymes, which serve as highly specific and extraordinarily efficient catalysts of biochemical reactions. Despite the growing availability of the atomic structures of enzymes, details of the… Read More »

Theoretical Study on Catalysis by Protein Enzymes and Ribozyme

Principal Investigator: Martin Karplus, Harvard University Research Objectives The goal of this project is to develop a greater understanding of the mechanisms involved in enzyme catalysis and related protein functions. We are studying two types of enzymes: proteins and a nucleic acid (hammerhead ribozyme). Computational Approach  For active-site models in the gas phase, ab initio or density functional (DFT) calculations are used. A few calculations with continuum dieletric models are… Read More »

Theoretical Study on Catalysis by Protein Enzymes, Ribosome, and Molecular Motors

Principal Investigator: Martin Karplus, Harvard University Research Objectives This project's goal is to develop a greater understanding of the mechanisms involved in enzyme catalysis and related protein functions. We are studying the protein enzymes chorismate mutase, flavoxireductase, and aminopeptidase, and a nucleic acid enzyme, the hammerhead ribosome. We are also studying another class of enzymes known as molecular motors, which play important roles in bioenergy transduction and gene… Read More »